Research Article
BibTex RIS Cite

ACCUMULATION OF METALS IN SOME WILD AND CULTIVATED MUSHROOM SPECIES

Year 2019, Volume: 37 Issue: 4, 1375 - 1384, 01.12.2019

Abstract

In this study; the contents of some trace elements (Mg, Al, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se), toxic heavy metal contents (Cr, As, Cd) and lead isotopes (206Pb, 207Pb and 208Pb) were determined in some wild edible (Amanita caesarea (Scop.) Pers., Cantharellus cibarius Fr., Craterellus cornucopioides (L.) Pers., Fistulina hepatica (Schaeff.) With., Meripilus giganteus (Pers.) P. Karst) and cultivated mushroom (Agaricus bisporus (J.E. Lange) Imbach, Pleurotus ostreatus (Jacq.) P. Kumm.) species. The trace elements and toxic heavy metal contents were found lower than the upper limits in both wild edible mushrooms and cultivation mushrooms. The elemental composition of the wild mushrooms and the cultivated mushrooms obtained from different firms was found to be statistically different (p<0.05) from each other. C. cornucopioides was revealed with the highest Ca, Mn, Ni, Cu, Zn, 208Pb and Cr contents. The metal accumulation in wild mushrooms was higher than the cultivated mushrooms except Al and Se. All investigated parameters revealed that there was not any health risk associated with the consumption of the analyzed wild and cultivated mushrooms.

References

  • [1] Kalač P., (2013) A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93(2),209-218.
  • [2] Llarena-Hernández R.C., Renouf E., Vitrac X., Mérillon J.-M., Savoie J.-M., (2017) Antioxidant activities and metabolites in edible fungi, a focus on the almond mushroom Agaricus subrufescens. Fungal Metabolites 739-760.
  • [3] Shen H.S., Shao S., Chen J.C., Zhou T. (2017) Antimicrobials from mushrooms for assuring food safety. Comprehensive Reviews in Food Science and Food Safety 16(2),316-329.
  • [4] Gurgen A., Yildiz S., Can Z., Tabbouche S., Kilic A.O., (2018) Antioxidant, antimicrobial and anti-quorum sensing activities of some wild and cultivated mushroom species collected from Trabzon, Turkey. Fresenius Environmental Bulletin 27(6),4120-4131.
  • [5] Muszyńska B., Kała K.,Sułkowska-Ziaja K., (2017) Edible mushrooms and their in vitro culture as a source of anticancer compounds, Biotechnology and Production of Anti-Cancer Compounds Springer.
  • [6] Chang S.-T. (1999) World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing, in China. International Journal of Medicinal Mushrooms 1(4), 291-300.
  • [7] Sevil V., Ayberk S., Çeliker B.S., Alyüz B., (2005) Investigation of Soil Contaminated by Lead, Cadmium, Mercury And Nickel. Sigma Journal of Engineering and Natural Science 1, 141-146.
  • [8] Igbiri S., Udowelle N., Ekhator O., Asomugha R., Igweze Z., Orisakwe O. (2017) Edible mushrooms from Niger Delta, Nigeria with heavy metal levels of public health concern: a human health risk assessment. Recent Patents on Food, Nutrition & Agriculture 9(1), 31-41.
  • [9] Falandysz J., Zhang J., Zalewska T. (2017) Radioactive artificial 137Cs and natural 40K activity in 21 edible mushrooms of the genus Boletus species from SW China. Environmental Science and Pollution Research 24(9),8189-8199.
  • [10] Yilmaz A., Yıldız S., Çelik A., Çevik U. (2016) Determination of heavy metal and radioactivity in agaricus campestris mushroom collected from kahramanmaraş and erzurum proviences. Turkish Journal of Agriculture-Food Science Technology 4(3),208-215.
  • [11] Sevindik M., Akgul H., Bal C., Selamoglu Z. (2018) Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian Journal of Pharmaceutical Education Research 52(3),437-441.
  • [12] Brunnert H., Zadražil F. (1983) The translocation of mercury and cadmium into the fruiting bodies of six higher fungi. European journal of Applied Microbiology and Biotechnology 17(6),358-364.
  • [13] Wang X., Liu H., Zhang J., Li T., Wang Y. (2017) Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. Journal of Environmental Science and Health, Part B 52(3),178-183.
  • [14] Akpanabiatu M., Bassey N., Udosen E., Eyong E. (1998) Evaluation of some minerals and toxicants in some Nigerian soup meals. Journal of Food Composition and Analysis 11(4),292-297.
  • [15] Yumoto S., Nagai H., Matsuzaki H., Matsumura H., Tada W., Nagatsuma E.,Kobayashi K. (2001) Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Research Bulletin 55(2),229-234.
  • [16] ATSDR T. (2001) ATSDR (Agency for Toxic Substances and Disease Registry). Prepared by clement international corp., under contract 20588-0608.
  • [17] Müller M., Anke M., Illing-Günther H. (1997) Aluminium in wild mushrooms and cultivated Agaricus bisporus. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 205(3),242-247.
  • [18] Fleming K.H., Heimbach J.T. (1994) Consumption of calcium in the US: food sources and intake levels. The Journal of NUtrition 124(suppl_8),1426S-1430S.
  • [19] Martinez-Finley E.J., Gavin C.E., Aschner M., Gunter T.E. (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radical Biology and Medicine 62, 65-75.
  • [20] Kaya A., Bag H. (2010) Trace element contents of edible macrofungi growing in Adiyaman, Turkey. Asian Journal of Chemistry 22(2),1515.
  • [21] Semreen M.H., Aboul-Enein H.Y. (2011) Determination of heavy metal content in wild-edible mushroom from Jordan. Analytical Letters 44(5),932-941.
  • [22] Vetter J. (2003) Chemical composition of fresh and conserved Agaricus bisporus mushroom. European Food Research and Technology 217(1),10-12.
  • [23] Jurado R.L. (1997) Iron, infections, and anemia of inflammation. Clinical Infectious Diseases 25(4),888-895.
  • [24] Sesli E.,Tüzen M. (1999) Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry 65(4),453-460.
  • [25] Underwood E. ( 2012) Trace elements in human and animal nutrition Elsevier.
  • [26] Işıloğlu M., Yılmaz F., Merdivan M. (2001) Concentrations of trace elements in wild edible mushrooms. Food Chemistry 73(2),169-175.
  • [27] Mendil D., Uluözlü Ö.D., Hasdemir E., Çaǧlar A. (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chemistry 88(2),281-285.
  • [28] Hart E., Steenbock H., Waddell J., Elvehjem C. (2002) Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. 1928. The Journal of Biological Chemistry 277(34),e22.
  • [29] Demirbaş A. (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chemistry 75(4),453-457.
  • [30] Vallee B.L., Falchuk K.H. (1993) The biochemical basis of zinc physiology. Physiological Reviews 73(1),79-118.
  • [31] Turkekul I., Elmastas M., Tüzen M. (2004) Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry 84(3),389-392.
  • [32] Falandysz J. (2008) Selenium in edible mushrooms. Journal of Environmental Science and Health Part C 26(3),256-299.
  • [33] Borovička J., Řanda Z. (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress 6(4),249.
  • [34] Wetherill G. (1963) Discordant uranium‐lead ages: 2. Disordant ages resulting from diffusion of lead and uranium. Journal of Geophysical Research 68(10),2957-2965.
  • [35] Borgs P., Mallard B. (1998) Immune-endocrine interactions in agricultural species: chromium and its effect on health and performance. Domestic Animal Endocrinology 15(5),431-438.
  • [36] Isildak Ö., Turkekul I., Elmastas M., Tuzen M. (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry 86(4),547-552.
  • [37] Godt J., Scheidig F., Grosse-Siestrup C., Esche V., Brandenburg P., Reich A.,Groneberg D.A. (2006) The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology 1(1),22.
  • [38] Yilmaz F., Işiloğlu M.,Merdivan M. (2002) Heavy metal levels in some macrofungi. Turkish Journal of Botany 27(1),45-56.
  • [39] Kalač P., Svoboda L. (2000) A review of trace element concentrations in edible mushrooms. Food chemistry 69(3),273-281.
  • [40] Vetter J. (2004) Arsenic content of some edible mushroom species. European Food Research and Technology 219(1),71-74.
  • [41] Vetter J. (1994) Data on arsenic and cadmium contents of some common mushrooms. Toxicon 32(1),11-15.
  • [42] Garcia M., Alonso J., Fernández M., Melgar M. (1998) Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology 34(4),330-335.
  • [43] Sevindik M., Akgül H., Günal S., Doğan M. (2016) Pleurotus ostreatus’ un doğal ve kültür formlarının antimikrobiyal aktiviteleri ve mineral madde içeriklerinin belirlenmesi. Kastamonu Üniversitesi Orman Fakültesi Dergisi 16(1), 153-156
  • [44] Sevindik M., Akgul H., Dogan M., Akata I., Selamoglu Z. (2018) Determination of antioxidant, antimicrobial, DNA protective activity and heavy metals content of Laetiporus sulphureus. Fresenius Environmental Bulletin 27(3), 1946-1952.
There are 44 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Sibel Yıldız This is me 0000-0001-8448-4628

Ayşenur Gürgen This is me 0000-0002-2263-7323

Uğur Çevik This is me

Publication Date December 1, 2019
Submission Date December 13, 2018
Published in Issue Year 2019 Volume: 37 Issue: 4

Cite

Vancouver Yıldız S, Gürgen A, Çevik U. ACCUMULATION OF METALS IN SOME WILD AND CULTIVATED MUSHROOM SPECIES. SIGMA. 2019;37(4):1375-84.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/