Research Article
BibTex RIS Cite

DIFFERENTIAL INVARIANTS FOR A CURVE FAMILY IN

Year 2018, Volume: 36 Issue: 2, 341 - 349, 01.06.2018

Abstract

In this paper, we obtain generators of differential invariants for a curve family in . Then we define equivalence of the curve families and develop a point of view for equivalence problem. Using these generators, we give a solution to the problem.

References

  • [1] Liu, H., Curves in Affine and Semi Euclidean Spaces, Results.Math, 65 (2014), 235–249.
  • [2] Giblin, P.J., Sano, T., Generic Equi-Centro-Affine Differential Geometry of Plane Curves, Topology Appl., 159 (2012), 476–483.
  • [3] Izumiya, S., Sano, T., Generic Affine Differential Geometry of Space Curves, Proceedings of the Royal Soc. of Edinburgh, 128A (1998), 301–314. Birkhäuser, 2000.
  • [4] Khadjiev, Dj., Pekşen, Ö., The Complete System of Global Differential and Integral Invariants for Equi-Affine Curves, Dif.Geom.Appl., 20 (2004), 167–175.
  • [5] Nadjafikhah, M., Affine Differential Invariants for Planar Curves, Balk.J.Geom. Appl., 7 (2002), 69–78.
  • [6] Olver, P.J., Moving Frames and Differential Invariants in Centro-Affine Geometry, Lobachevskii J.Math., 31 (2010), 77–89.
  • [7] Olver, P.J., Differential Invariants of Surfaces, Dif.Geom.Appl. 27 (2009), 230–239.
  • [8] Yang, Y., Yu, Y., Liu, H., Centro-Affine Geometry of Equi-Affine Rotation Surfaces in , J.Math.Anal.Appl., 414 (2014), 46–60.
  • [9] Yu, Y., Yang, Y., Liu, H., Centro-Affine Ruled Surfaces in , J.Math. Anal.Appl., 365 (2010), 683–693.
  • [10] Sağıroğlu, Y., Centro-Equiaffine Differential Invariants of Curve Families, IEJG, 9 (2016), 23–29.
  • [11] Sağıroğlu, Y., Equi-Afiine Differential Invariants of a Pair of Curves, TWMS J.Pure.Appl.Math., 6 (2015), 238–245.
  • [12] Sağıroğlu, Y., Affine Differential Invariants of Curves, The Equivalence of Parametric Curves in Terms of Invariants LAP Lambert Academic Publishing, 2012.
  • [13] Schirokow, P.A., Schirokow, A.P., Affine Differentialgeometrie, Teubner, 1962.
  • [14] Simon, U., Recent Developments in Affine Differential Geometry, Dif.Geom. Appl., Proc.Conf.Dubrovnik, Yugosl., 1988 (1989), 327–347.
  • [15] Simon, U., Liu, H., Magid, M., Scharlach, Ch., Recent Developments in Affine Differential Geometry In: Geometry and Topology of Submanifolds VIII, World Scientific, Singapore, (1966), 1–15, 293–408.
  • [16] Gardner, R.B., Wilkens, G.R., The Fundamental Theorems of Curves and Hypersurfaces in Centro-Affine Geometry, Bull.Belg.Math.Soc., 4 (1997), 379–401.
  • [17] Sağıroğlu, Y., Pekşen, Ö., The Equivalence of Equi-Affine Curves, Turk.J.Math., 34 (2010), 95–104.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Yasemin Sağıroğlı This is me 0000-0003-0660-211X

Uğur Gözütok This is me 0000-0002-6072-3134

Publication Date June 1, 2018
Submission Date August 17, 2017
Published in Issue Year 2018 Volume: 36 Issue: 2

Cite

Vancouver Sağıroğlı Y, Gözütok U. DIFFERENTIAL INVARIANTS FOR A CURVE FAMILY IN. SIGMA. 2018;36(2):341-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/