Research Article
BibTex RIS Cite

WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES WITH ZERO BOUNDARY VALUES AND CAPACITY ESTIMATES

Year 2018, Volume: 36 Issue: 2, 373 - 388, 01.06.2018

Abstract

In this paper, we define weighted variable exponent Sobolev space with zero boundary values and investigate some properties of this space with weighted variable Sobolev capacity. We obtain Poincaré inequality with respect to zero boundary values. We will introduce a capacity in sense to this defined space and, also, give several estimates.

References

  • [1] Acerbi E., Mingione G., (2001) Regularity Results for a Class of Functionals with Non-Standard Growth, Arch. Ration. Mech. and Anal., Vol. 156, 121-140.
  • [2] Aydın I., (2012) On Variable Exponent Amalgam Spaces, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., Vol. XX, Fasc. 3.
  • [3] Aydın I., (2012) Weighted Variable Sobolev Spaces and Capacity, Journal of Function Spaces and Applications, Vol. 2012, Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • [4] Baroni P., Habermann J., (2014) Elliptic Interpolation Estimates for Non-Standard Growth Operators, Ann. Acad. Sci. Fenn. Math., Vol. 39, 119-162.
  • [5] Bui T. A., Duong X. T., (2017) Weighted Variable Exponent Sobolev Estimates for Elliptic Equations with Non-Standard Growth and Measure Data, (preprint), https://arxiv.org/abs/1701.00952v1.
  • [6] Coscia A., Mingione G., (1999) Hölder Continuity of the Gradient of - Harmonic Mappings, C. R. Acad. Sci. Paris, Ser. 1 Math., Vol. 328, No. 4, 363-368.
  • [7] Diening L., (2004) Maximal Function on Generalized Lebesgue Spaces , Math. Inequal. Appl., Vol. 7, No. 2, 245-253.
  • [8] Diening L., Hästö P. Muckenhoupt Weights in Variable Exponent Spaces, (preprint).
  • [9] Diening L., Hästö P., Nekvinda A., (2004) Open Problems in Variable Exponent Lebesgue and Sobolev Spaces, In Proceedings of the Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA' 04), Milovy, Czech, 38-58.
  • [10] Diening L., Harjulehto P., Hästö P., Růžička M., (2011) Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin.
  • [11] Dinca G., (2009) A fixed Point Method for the - Laplacian, C. R. Acad. Sci. Paris, Ser. I, Vol. 347, 757-762.
  • [12] Evans L. C., Gariepy R.F., (1992) Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA.
  • [13] Fan X., Zhao D., (2001) On the Spaces and , J. Math. Anal. Appl., Vol. 263, No. 2, 424-446.
  • [14] Fan X., Zhang Q., (2003) Existence of Solutions for - Laplacian Dirichlet Problem, Nonlinear Anal., Vol. 52, 1843-1852.
  • [15] Gilbarg D., Trudinger N. S., (1977) Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin.
  • [16] Harjulehto P., Hästö P., Koskenoja M., (2007) Properties of Capacities in Variable Exponent Sobolev Spaces, Journal of Analysis and Applications, Vol. 5, No. 2, 71-92.
  • [17] Harjulehto P., Hästö P., Koskenoja M., (2003) The Dirichlet Energy Integral on Intervals in Variable Exponent Sobolev Spaces, Z. Anal. Anwend., Vol. 22, No. 4, 911-923.
  • [18] Harjulehto P., Hästö P., Koskenoja M., Varonen S., (2003) Sobolev Capacity on the Space , Journal of Function Spaces and Applications, Vol. 1, No. 1, 17-33.
  • [19] Harjulehto P., Hästö P., Koskenoja M., Varonen S., (2006) The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values, Potential Anal., Vol. 25, 205-222.
  • [20] Heinonen J., Kilpeläinen T., Martio O., (1993) Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford.
  • [21] Iliaş P. S., (2008) Dirichlet Problem with - Laplacian, Mathematical Reports, Vol. 10(60), No. 1, 43-56.
  • [22] Kellogg O. D., (1929) Foundations of Potential Theory, Springer.
  • [23] Kilpeläinen T., (1994) Weighted Sobolev Spaces and Capacity, Ann. Acad. Sci. Fenn. Math., Vol. 19, No. 1, 95-113.
  • [24] Kilpeläinen T., (1998) A Remark on the Uniqueness of Quasi Continuous Functions, Ann. Acad. Sci. Fenn. Math., Vol. 23, 261-262.
  • [25] Kilpeläinen T., Kinnunen J., Martio O., (2000) Sobolev Spaces with Zero Boundary Values on Metric Spaces. Potential Anal., Vol. 12, 233-247.
  • [26] Kim Y., Wang L., Zhang C., (2010) Global Bifurcation for a Class of Degenerate Elliptic Equations with Variable Exponents, J. Math. Anal. Appl., Vol. 371, 624-637.
  • [27] Kinderlehrer D., Stampacchia G., (1980) An Introduction to Variational Inequalities and Their Applications, Academic, London.
  • [28] Kokilashvili V., Samko S., (2003) Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent, Georgian Math. J., Vol. 10, No 1, 145-156.
  • [29] Kováčik O., Rákosník J., (1991) On spaces and , Czechoslovak Math. J., 41 (116), No.4, 592-618.
  • [30] Kulak Ö., Gürkanlı, A. T., (2013) Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, J. Inequal. Appl., 2013: 259, 1-21.
  • [31] Liu Q., (2008) Compact Trace in Weighted Variable Exponent Sobolev Spaces , J. Math. Anal. Appl., Vol. 348, 760-774.
  • [32] Liu Q., Liu D., (2013) Existence and Multiplicity of Solutions to a - Laplacian Equation with Nonlinear Boundary Condition on Unbounded Domain, Differ. Equ. Appl., Vol. 5, No. 4, 595-611.
  • [33] Mashiyev R. A., Cekic B., Avci M., Yucedag Z., (2012) Existence and Multiplicity of Weak Solutions for Nonuniformly Elliptic Equations with Nonstandart Growth Condition, Complex Var. Elliptic Equ., Vol. 57, No. 5, 579-595.
  • [34] Maz'ja V.G., (1985) Sobolev Spaces, Springer, Berlin, Germany.
  • [35] Mendelson B., (1962) Introduction to Topology, Allyn and Bacon, Inc., Boston.
  • [36] Moussaoui M., Elbouyahyaoui L., (2015) Existence of Solution for Dirichlet Problem with - Laplacian, Bol. Soc. Paran. Mat., Vol. 33, No. 2, 241-248.
  • [37] Muckenhoupt B., (1972) Weighted Norm Inequalities for the Hardy Maximal Function, Trans. Amer. Math. Soc., Vol. 165, 207-226.
  • [38] Ohno T., (2009) Compact Embeddings in the Generalized Sobolev Space and Existence of Solutions for Nonlinear Elliptic Problems, Nonlinear Anal., Vol. 71, 1534-1541.
  • [39] Samko S., (2005) On a Progress in the Theory of Lebesgue Spaces with Variable Exponent: Maximal and Singular Operators, Integral Transforms and Special Functions, Vol. 16, No. 5-6, 461-482.
  • [40] Shanmugalingam N., (2001) Harmonic Functions on Metric Spaces, Illinois J. Math., Vol. 45, No. 3, 1021-1050.
  • [41] Zhikov V. V., Surnachev M. D., (2016) On Density of Smooth Functions in Weighted Sobolev Spaces with Variable Exponents, St. Petersburg Math. J., Vol. 27, No. 3, 415-436.
  • [42] Ziemer W. P., (1989) Weakly Differentiable Functions, Springer-Verlag, New York.
There are 42 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Cihan Ünal This is me 0000-0002-7242-393X

İsmail Aydın This is me 0000-0001-8371-3185

Publication Date June 1, 2018
Submission Date June 19, 2017
Published in Issue Year 2018 Volume: 36 Issue: 2

Cite

Vancouver Ünal C, Aydın İ. WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES WITH ZERO BOUNDARY VALUES AND CAPACITY ESTIMATES. SIGMA. 2018;36(2):373-88.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/