Review
BibTex RIS Cite

SCHEDULING IN ENERGY SYSTEMS

Year 2015, Volume: 33 Issue: 4, 679 - 690, 01.09.2015

Abstract

Increasing population forces us to find the best ways of using the existing energy resources. In search of the best ways there is a higher need for optimisation applications. It is observed that applications in the energy fields are mainly focused on minimizing the investments, maximizing the efficiency of technological designs, and minimizing the operational costs. Operations scheduling or load planning as named in the energy field, is important in minimizing the operational costs. Besides, scheduling is one of the basic fields of operations research that is why it is a field of continuous improvement in line with the changes in the energy field. This research aims to analyse the scheduling literature to depict the subjects least studied. Our article handles the publications of research on scheduling with the objectives, decision variables, constraints, methods and the achievements. Furthermore, the uncertainties handles in primal energy or renewable energy utilization are covered by the analysis performed. The scheduling optimization studies found in literature is clustered using self-organizing maps (SOM) in order to observe the frequency of subjects analysed. This study confirming the literature survey and clustering of existing studies will lead the researchers working on energy systems scheduling.

References

  • [1] Aghaei, J., & Alizadeh, M.-I. (2013). Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy, 55, 1044–1054. doi:10.1016/j.energy.2013.04.048.
  • [2] Alipour, M., Mohammadi-Ivatloo, B., & Zare, K. (2014). Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs. Applied Energy, 136, 393–404. doi:10.1016/j.apenergy.2014.09.039.
  • [3] Alipour, M., Zare, K., & Mohammadi-Ivatloo, B. (2014). Short-term scheduling of combined heat and power generation units in the presence of demand response programs. Energy, 71, 289–301. doi:10.1016/j.energy.2014.04.059.
  • [4] Alpaydın, E. (1998). Soft vector quantization and the EM algorithm. Neural Networks, 11, 467–477.
  • [5] Bath, S. K., Dhillon, J. S., & Kothari, D. P. (2004). Fuzzy satisfying stochastic multi-objective generation scheduling by weightage pattern search methods. Electric Power Systems Research, 69(2-3), 311–320. doi:10.1016/j.epsr.2003.10.006.
  • [6] Benhamida, F., & Abdelbar, B. (2010). Enhanced Lagrangian relaxation solution to the generation scheduling problem. International Journal of Electrical Power & Energy Systems, 32(10), 1099–1105. doi:10.1016/j.ijepes.2010.06.007.
  • [7] Budayan, C. (2008). Strategic Group Analysis: Strategic Perspective, Differentiation and Performance in Construction. Middle East Technical University.
  • [8] Cau, G., Cocco, D., Petrollese, M., Knudsen Kær, S., & Milan, C. (2014). Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Conversion and Management, 87, 820–831. doi:10.1016/j.enconman.2014.07.078.
  • [9] Chen, S., Tsay, M., & Gow, H. (2005). Scheduling of cogeneration plants considering electricity wheeling using enhanced immune algorithm. International Journal of Electrical Power & Energy Systems, 27(1), 31–38. doi:10.1016/j.ijepes.2004.07.008.
  • [10] Choling, D., Yu, P., & Venkatesh, B. (2009). Effects of security constraints on unit commitment with wind generators. In 2009 IEEE Power & Energy Society General Meeting (pp. 1–6). IEEE. doi:10.1109/PES.2009.5275977.
  • [11] Domínguez, R., Conejo, A. J., & Carrión, M. (2014). Operation of a fully renewable electric energy system with CSP plants. Applied Energy, 119, 417–430. doi:10.1016/j.apenergy.2014.01.014.
  • [12] El Desouky, A. A., Aggarwal, R., Elkateb, M. M., & Li, F. (2001). Advanced hybrid genetic algorithm for short-term generation scheduling. IEE Proceedings - Generation, Transmission and Distribution, 148(6), 511. doi:10.1049/ip-gtd:20010642.
  • [13] ElDesouky, A. A. (2014). Security constrained generation scheduling for grids incorporating wind, photovoltaic and thermal power. Electric Power Systems Research, 116, 284–292. doi:10.1016/j.epsr.2014.06.017.
  • [14] El-Sharkh, M. Y., Rahman, A., & Alam, M. S. (2010). Short term scheduling of multiple grid-parallel PEM fuel cells for microgrid applications. International Journal of Hydrogen Energy, 35(20), 11099–11106. doi:10.1016/j.ijhydene.2010.07.033.
  • [15] Garces, L. P., & Conejo, A. J. (2010). Weekly Self-Scheduling, Forward Contracting, and Offering Strategy for a Producer. IEEE Transactions on Power Systems, 25(2), 657–666. doi:10.1109/TPWRS.2009.2032658.
  • [16] Guan, X., Xu, Z., & Jia, Q.-S. (2010). Energy-Efficient Buildings Facilitated by Microgrid. IEEE Transactions on Smart Grid, 1(3), 243–252. doi:10.1109/TSG.2010.2083705.
  • [17] Hand, D.J., Manilla, H., Smith, P. (2001). Principles of Data Mining. India: Prentice Hall.
  • [18] Haykin, S. (2009). Neural Networks and Learning Machines (Third, pp. 425–474). New York: Prentice Hall.
  • [19] Hetzer, J., Yu, D. C., & Bhattarai, K. (2008). An Economic Dispatch Model Incorporating Wind Power. IEEE Transactions on Energy Conversion, 23(2), 603–611. doi:10.1109/TEC.2007.914171.
  • [20] Hsu, C. C. (2006). Generalizing self-organizing map for categorical data. IEEE Transactions on Neural Networks, 17(2), 294–304. doi:10.1109/TNN.2005.863415.
  • [21] Izadbakhsh, M., Gandomkar, M., Rezvani, A., & Ahmadi, A. (2015). Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy, 75, 598–606. doi:10.1016/j.renene.2014.10.043.
  • [22] Karami, H., Sanjari, M. J., Tavakoli, A., & Gharehpetian, G. B. (2013). Optimal Scheduling of Residential Energy System Including Combined Heat and Power System and Storage Device. Electric Power Components and Systems, 41(8), 765–781. doi:10.1080/15325008.2013.769032.
  • [23] Khodr, H. M., El Halabi, N., & García-Gracia, M. (2012). Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience. Renewable Energy, 48, 269–275. doi:10.1016/j.renene.2012.05.008.
  • [24] Kim, J. S., & Edgar, T. F. (2014). Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming. Energy, 77, 675–690. doi:10.1016/j.energy.2014.09.062.
  • [25] Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE, 78(9), 1464–1480.
  • [26] Leopold, E., May, M., & Paab, G. (2004). Data Mining and Text Mining For Science & Technology Research. H.F. Moed vd içinde, Handbook of Quantitative Science and Technology Research, 187-213. Netherlands: Kluwer Academic Publishers.
  • [27] Liang, R.-H., & Liao, J.-H. (2007). A Fuzzy-Optimization Approach for Generation Scheduling With Wind and Solar Energy Systems. IEEE Transactions on Power Systems, 22(4), 1665–1674. doi:10.1109/TPWRS.2007.907527.
  • [28] Lima, R. M., Novais, A. Q., & Conejo, A. J. (2015). Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach. European Journal of Operational Research, 240(2), 457–475. doi:10.1016/j.ejor.2014.07.013.
  • [29] Liu, P., Fu, Y., & Kargarian marvasti, A. (2014). Multi-stage Stochastic Optimal Operation of Energy-efficient Building with Combined Heat and Power System. Electric Power Components and Systems, 42(3-4), 327–338. doi:10.1080/15325008.2013.862324.
  • [30] Logenthiran, T., & Srinivasan, D. (2009). Short term generation scheduling of a Microgrid. In TENCON 2009 - 2009 IEEE Region 10 Conference (pp. 1–6). IEEE. doi:10.1109/TENCON.2009.5396184.
  • [31] Logenthiran, T., Woo, W. L., & Phan, V. T. (2015). Lagrangian relaxation hybrid with evolutionary algorithm for short-term generation scheduling. International Journal of Electrical Power & Energy Systems, 64, 356–364. doi:10.1016/j.ijepes.2014.07.044.
  • [32] Maturana, J., & Riff, M.-C. (2007). Solving the short-term electrical generation scheduling problem by an adaptive evolutionary approach. European Journal of Operational Research, 179(3), 677–691. doi:10.1016/j.ejor.2005.03.074.
  • [33] Mohammadi, S., & Mohammadi, A. (2014). Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid. International Journal of Electrical Power & Energy Systems, 61, 531–546. doi:10.1016/j.ijepes.2014.03.041.
  • [34] Morais, H., Kádár, P., Faria, P., Vale, Z. A., & Khodr, H. M. (2010). Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 35(1), 151–156. doi:10.1016/j.renene.2009.02.031.
  • [35] Morales, J. M., Conejo, A. J., & Perez-Ruiz, J. (2009). Economic Valuation of Reserves in Power Systems With High Penetration of Wind Power. IEEE Transactions on Power Systems, 24(2), 900–910. doi:10.1109/TPWRS.2009.2016598.
  • [36] Morales, J. M., Zugnoa, M., Pineda, S., & Pinson, P. (2014). Electricity market clearing with improved scheduling of stochastic production. European Journal of Operational Research, 235, 765–774.
  • [37] Osório, G. J., Lujano-Rojas, J. M., Matias, J. C. O., & Catalão, J. P. S. (2015). A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies. International Journal of Electrical Power & Energy Systems, 64, 1063– 1072. doi:10.1016/j.ijepes.2014.09.010.
  • [38] Pandžić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant based on stochastic programming. Applied Energy, 105, 282–292. doi:10.1016/j.apenergy.2012.12.077.
  • [39] Peng, C., Sun, H., Guo, J., & Liu, G. (2012). Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. International Journal of Electrical Power & Energy Systems, 42(1), 119–126. doi:10.1016/j.ijepes.2012.03.012.
  • [40] Pritchard, G., Zakeri, G., & Philpott, A. (2010). A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants. Operations Research, 58(4-part-2), 1210–1219. doi:10.1287/opre.1090.0800.
  • [41] Reutterer, T. (1998). Competitive Market Structure and Segmentation Analysis with Self-Organizing Feature Maps. In Proceedings of the 27th EMAC Conference (pp. 85–115). Stockholm.
  • [42] Rezvani, A., Gandomkar, M., Izadbakhsh, M., & Ahmadi, A. (2015). Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production, 87, 216–226. doi:10.1016/j.jclepro.2014.09.088.
  • [43] Rigo-Mariani, R., Sareni, B., Roboam, X., & Turpin, C. (2014). Optimal power dispatching strategies in smart-microgrids with storage. Renewable and Sustainable Energy Reviews, 40, 649–658. doi:10.1016/j.rser.2014.07.138.
  • [44] Saber, A. Y., & Venayagamoorthy, G. K. (2012). Resource Scheduling Under Uncertainty in a Smart Grid With Renewables and Plug-in Vehicles. IEEE Systems Journal, 6(1), 103–109. doi:10.1109/JSYST.2011.2163012.
  • [45] Tan, Z., Ju, L., Li, H., Li, J., & Zhang, H. (2014). A two-stage scheduling optimization model and solution algorithm for wind power and
  • energy storage system considering uncertainty and demand response. International Journal of Electrical Power & Energy Systems, 63, 1057–1069. doi:10.1016/j.ijepes.2014.06.061.
  • [46] Tian, J., Mao, Y., & Zhai, Q. (2014). Generation scheduling of autonomous power plant in energy intensive enterprises with unknown load demand distribution. In Proceedings of the 33rd Chinese Control Conference (pp. 7510–7515). IEEE. doi:10.1109/ChiCC.2014.6896250.
  • [47] Tuohy, A., Meibom, P., Denny, E., & O’Malley, M. (2009). Unit Commitment for Systems With Significant Wind Penetration. IEEE Transactions on Power Systems, 24(2), 592–601. doi:10.1109/TPWRS.2009.2016470.
  • [48] Uyar, A. Ş., Türkay, B., & Keleş, A. (2011). A novel differential evolution application to short-term electrical power generation scheduling. International Journal of Electrical Power & Energy Systems, 33(6), 1236–1242. doi:10.1016/j.ijepes.2011.01.036.
  • [49] Varkani, A. K., Daraeepour, A., & Monsef, H. (2011). A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets. Applied Energy, 88(12), 5002–5012. doi:10.1016/j.apenergy.2011.06.043.
  • [50] Vijayakumar, D., & Malathi, V. (2014). A real-time management and evolutionary optimization scheme for a secure and flexible smart grid towards sustainable energy. International Journal of Electrical Power & Energy Systems, 62, 540–548. doi:10.1016/j.ijepes.2014.05.013.
  • [51] Wongvisanupong, K., & Hoonchareon, N. (2013). Optimal Scheduling of Hybrid CCHP and PV Operation for Shopping Complex Load. In 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 667–672). Krabi, Thailand: IEEE, Piscataway, NJ, USA.
  • [52] Wu, L., Shahidehpour, M., & Li, T. (2007). Stochastic Security-Constrained Unit Commitment. IEEE Transactions on Power Systems, 22(2), 800–811. doi:10.1109/TPWRS.2007.894843.
  • [53] Zein Alabedin, A. M., El-Saadany, E. F., & Salama, M. M. A. (2012). Generation scheduling in Microgrids under uncertainties in power generation. In 2012 IEEE Electrical Power and Energy Conference (pp. 133–138). IEEE. doi:10.1109/EPEC.2012.6474937.
  • [54] Zhang, Y., & van der Schaar, M. (2014). Structure-Aware Stochastic Storage Management in Smart Grids. IEEE Journal of Selected Topics in Signal Processing, 8(6), 1098–1110. doi:10.1109/JSTSP.2014.2346477.
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Seçil Ercan This is me

Gülgün Kayakutlu This is me

Publication Date September 1, 2015
Submission Date June 24, 2015
Published in Issue Year 2015 Volume: 33 Issue: 4

Cite

Vancouver Ercan S, Kayakutlu G. SCHEDULING IN ENERGY SYSTEMS. SIGMA. 2015;33(4):679-90.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/