Review Article
BibTex RIS Cite
Year 2023, Volume: 41 Issue: 6, 1272 - 1296, 29.12.2023

Abstract

References

  • REFERENCES
  • [1] Bruce PG, Scrosati B, Tarascon J. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 2008;47:2930─2946. [CrossRef]
  • [2] Esmaeili J, Jannesari H. Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale. Energy Convers Manage 2017;139:194─205. [CrossRef]
  • [3] Yoshino A. Development of the lithium-ion battery and recent technological trends. In: Lithium-ion batteries. Elsevier; 2014:1─20. [CrossRef]
  • [4] Lyu D, Ren B, Li S. Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mech 2019;230:701─727. [CrossRef]
  • [5] Liao Z, Zhang S, Li K, Zhang G, Habetler TG. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J Power Sources 2019;436:226879. [CrossRef]
  • [6] Bilgen S. Structure and environmental impact of global energy consumption. Renew Sustain Energy Rev. 2014;38:890─902. [CrossRef]
  • [7] Ozturk I, Aslan A, Kalyoncu H. Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy 2010;38:4422─4428. [CrossRef]
  • [8] Abbas Z. Re-assessing the Contribution of Energy Consumption to GDP Per-Capita: Evidence from Developed and Developing Countries. Int J Energy Econ Policy. 2020;10:404─410. [CrossRef]
  • [9] Aslan A. Energy consumption and GDP: The strong relationship in OECD countries. Energy Sources Part B Econ Plan Policy 2013;8:339─345. [CrossRef]
  • [10] Aleklett K, Höök M, Jakobsson K, Lardelli M, Snowden S, Söderbergh B. The peak of the oil age–analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 2010;38:1398─1414. [CrossRef]
  • [11] Chang C-L, McAleer M. The fiction of full BEKK: Pricing fossil fuels and carbon emissions. Finance Res Lett 2019;28:11─19. [CrossRef]
  • [12] Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014;39:748─764. [CrossRef]
  • [13] Aneke M, Wang M. Energy storage technologies and real life applications–A state of the art review. Appl Energy 2016;179:350─377. [CrossRef]
  • [14] Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC. A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 2014;33:532─545. [CrossRef]
  • [15] Naish C, McCubbin I, Edberg O, Harfoot M. Outlook of energy storage technologies. European Parliament, Policy Department, Economic And Scientific Policy; 2008;1-65.
  • [16] Gaines L, Cuenca R. Costs of lithium-ion batteries for vehicles. Argonne National Lab., IL (US); 2000; 761281. [CrossRef]
  • [17] Broussely M. Recent developments on lithium ion batteries at SAFT. J Power Sources. 1999;81:140─143. [CrossRef]
  • [18] Ramadass P, Fang W, Zhang ZJ. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique. J Power Sources 2014;248:769─776. [CrossRef]
  • [19] Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013;226:272─288. [CrossRef]
  • [20] Doughty D, Roth EP. A general discussion of Li Ion battery safety. Electrochem Soc Interface 2012;21:37─44.
  • [21] Ploehn HJ, Ramadass P, White RE. Solvent diffusion model for aging of lithium-ion battery cells. J Electrochem Soc 2004;151:A456. [CrossRef]
  • [22] Hong J, Maleki H, Al Hallaj S, Redey L, Selman JR. Electrochemical‐calorimetric studies of lithium‐ion cells. J Electrochem Soc 1998;145:1489─1501. [CrossRef]
  • [23] Spotnitz RM, Weaver J, Yeduvaka G, Doughty DH, Roth EP. Simulation of abuse tolerance of lithium-ion battery packs. J Power Sources 2007;163:1080─1086. [CrossRef]
  • [24] Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv 2018;4:eaas9820. [CrossRef]
  • [25] Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, et al. Ageing mechanisms in lithium-ion batteries. J Power Sources. 2005;147:269─281. [CrossRef]
  • [26] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources 2003;113:81─100.
  • [27] Gerver RE, Meyers JP. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations. J Electrochem Soc 2011;158:A835. [CrossRef]
  • [28] Abraham DP, Liu J, Chen CH, Hyung YE, Stoll M, Elsen N,et al. Diagnosis of power fade mechanisms in high-power lithium-ion cells. J Power Sources 2003;119-121:511─516. [CrossRef]
  • [29] Abraham DP, Reynolds EM, Schultz PL, Jansen AN, Dees DW. Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J Electrochem Soc 2006;153:A1610. [CrossRef]
  • [30] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011;158:R1. [CrossRef]
  • [31] Guo G, Long B, Cheng B, Zhou S, Xu P, Cao B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources 2010;195:2393─2398. [CrossRef]
  • [32] Ramasamy RP, White RE, Popov BN. Calendar life performance of pouch lithium-ion cells. J Power Sources 2005;141:298─306. [CrossRef]
  • [33] Smith AJ, Dahn HM, Burns JC, Dahn JR. Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 C. J Electrochem Soc 2012;159:A705. [CrossRef]
  • [34] Jossen A. Fundamentals of battery dynamics. J Power Sources 2006;154:530─538. [CrossRef]
  • [35] Fleckenstein M, Bohlen O, Roscher MA, Bäker B. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. J Power Sources 2011;196:4769─4778. [CrossRef]
  • [36] Saw LH, Poon HM, San Thiam H, Cai Z, Chong WT, Pambudi NA, King YJ. Novel thermal management system using mist cooling for lithium-ion battery packs. Appl Energy 2018;223:146─158. [CrossRef]
  • [37] Spotnitz R. Simulation of capacity fade in lithium-ion batteries. J Power Sources 2003;113:72─80. [CrossRef]
  • [38] Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources 2010;195:2961─2968. [CrossRef]
  • [39] Akinlabi AAH, Solyali D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renew Sustain Energy Rev 2020;125:109815. [CrossRef]
  • [40] Farias-Rocha AP, Hassan KMK, Malimata JRR, Sánchez-Cubedo GA, Rojas-Solórzano LR. Solar photovoltaic policy review and economic analysis for on-grid residential installations in the Philippines. J Clean Prod 2019;223:45─56. [CrossRef]
  • [41] Shi Y, Pan X, Li B, Zhao M, Pang H. Co3O4 and its composites for high-performance Li-ion batteries. Chem Eng J 2018;343:427─446. [CrossRef]
  • [42] Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog Nat Sci Mater Int 2018;28:653─666. [CrossRef]
  • [43] Alipour M, Ziebert C, Conte FV, Kizilel R. A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells. Batteries 2020;6:35. [CrossRef]
  • [44] Hawley WB, Li J. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing. J Energy Storage 2019;25:100862. [CrossRef]
  • [45] Laidler KJ. The development of the Arrhenius equation. J Chem Educ 1984;61:494. [CrossRef]
  • [46] Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon 2022;191:448─470. [CrossRef]
  • [47] Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 1999;77:183─197. [CrossRef]
  • [48] Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973;14:589. [CrossRef]
  • [49] Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 2012;202:332─335. [CrossRef]
  • [50] Takada K, Inada T, Kajiyama A, Sasaki H, Kondo S, Watanabe M, Murayama M, Kanno R. Solid-state lithium battery with graphite anode. Solid State Ionics 2003;158:269─274. [CrossRef]
  • [51] Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high‐rate capability of solid‐state lithium batteries by nanoscale interfacial modification. Adv Mater 2006;18:2226─2229. [CrossRef]
  • [52] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun
  • 2007;9:1486─1490. [CrossRef]
  • [53] Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses. Electrochem Solid State Lett 2007;11:A1. [CrossRef]
  • [54] Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 2016;1:1─12. [CrossRef]
  • [55] Chen Z, Qin Y, Ren Y, Lu W, Orendorff C, Roth EP, et al. Multi-scale study of thermal stability of lithiated graphite. Energy Environ Sci. 2011;4:4023─4030. [CrossRef]
  • [56] Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy. 2015;154:74─91. [CrossRef]
  • [57] Guo R, Lu L, Ouyang M, Feng X. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Sci Rep. 2016;6:30248. [CrossRef]
  • [58] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 2014;255:294─301. [CrossRef]
  • [59] Feng X, He X, Ouyang M, Wang L, Lu L, Ren D, et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J Electrochem Soc 2018;165:A3748. [CrossRef]
  • [60] Doughty DH. Vehicle battery safety roadmap guidance. National Renewable Energy Lab.(NREL), Golden, CO (United States). 2012;1-131. [CrossRef]
  • [61] Ceder G, Aydinol MK, Kohan AF. Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci 1997;8:161─169. [CrossRef]
  • [62] El-Sebaii AA, Shalaby SM. Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Convers Manag 2013;74:109116.
  • [63] Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51─65. [CrossRef]
  • [64] Kalantarian MM, Asgari S, Mustarelli P. A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials. J Mater Chem A 2014;2:107─115. [CrossRef]
  • [65] Bocca A, Sassone A, Shin D, Macii A, Macii E, et al. An equation-based battery cycle life model for various battery chemistries. In: Proceedings of the 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC); Daejeon, South Korea. IEEE; 2015. [CrossRef]
  • [66] Ramírez FJ, Honrubia-Escribano A, Gómez-Lázaro E, Pham DT. Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017;102:440─452. [CrossRef]
  • [67] Lu Y, Yu L, Lou XWD. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018;4:972─996. [CrossRef]
  • [68] Stephan AM, Kumar TP, Ramesh R, Thomas S, Jeong SK, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater Sci Eng A 2006;430:132─137. [CrossRef]
  • [69] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18:252─264. [CrossRef]
  • [70] Ferg E, Gummow RJ, De Kock A, Thackeray MM. Spinel anodes for lithium‐ion batteries. J Electrochem Soc 1994;141:L147─L150. [CrossRef]
  • [71] Johnston DC. Superconducting and normal state properties of Li1+xTi2−xO4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility. J Low Temp Phys 1976;25:145─175. [CrossRef]
  • [72] Rossi Albertini V, Perfetti P, Ronci F, Scrosati B. Structural changes of electrodic materials in electrochemical cells observed by in situ energy dispersive X-ray diffraction (EDXD). Chem Mater 2001;13:450─455. [CrossRef]
  • [73] Mahmood N, Tang T, Hou Y. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 2016;6:1600374. [CrossRef]
  • [74] Reddy MV, Subba Rao GV, Chowdari BVR. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 2013;113:5364─5457. [CrossRef]
  • [75] Roy P, Srivastava SK. Nanostructured anode materials for lithium ion batteries. J Mater Chem A 2015;3:2454─2484. [CrossRef]
  • [76] Guan BY, Yu L, Li J, Lou XWD. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci Adv 2016;2:e1501554. [CrossRef]
  • [77] Yu L, Wu HB, Lou XW. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 2013;25:2296─2300. [CrossRef]
  • [78] Zhu G-N, Wang Y-G, Xia Y-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 2012;5:6652─6667. [CrossRef]
  • [79] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047─2051. [CrossRef]
  • [80] Funabiki A, Inaba M, Abe T, Ogumi Z. Stage transformation of lithium‐graphite intercalation compounds caused by electrochemical lithium intercalation. J Electrochem Soc 1999;146:2443─2448. [CrossRef]
  • [81] Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 1997;144:L208─L210. [CrossRef]
  • [82] Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S. Parameter analysis of a practical lithium-and sodium-air electric vehicle battery. J Power Sources 2011;196:6835─6840. [CrossRef]
  • [83] Peled E, Menkin S. Review—SEI: Past, Present and Future. J Electrochem Soc 2017;164:A1703─A1719. [CrossRef]
  • [84] Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage 2020;31:101551. [CrossRef]
  • [85] Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sustain Energy Rev 2016;64:106─128. [CrossRef]
  • [86] Liu B, Jia Y, Li J, Yin S, Yuan C, Hu Z, et al. Safety issues caused by internal short circuits in lithium-ion batteries. J Mater Chem A 2018;6:21475─21484. [CrossRef]
  • [87] Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 2016;9:3221─3229. [CrossRef]
  • [88] Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 2012;208:210─224. [CrossRef]
  • [89] Liu B, Zhang J, Zhang C, Xu J. Mechanical integrity of 18650 lithium-ion battery module: packing density and packing mode. Eng Fail Anal 2018;91:315─326. [CrossRef]
  • [90] Liu B, Zhao H, Yu H, Li J, Xu J. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading. Electrochim Acta 2017;256:172─184. [CrossRef]
  • [91] Yuan C, Wang L, Yin S, Xu J. Generalized separator failure criteria for internal short circuit of lithium-ion battery. J Power Sources 2020;467:228360. [CrossRef]
  • [92] Zhu J, Wierzbicki T, Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 2018;378:153─168. [CrossRef]
  • [93] Liu B, Jia Y, Yuan C, Wang L, Gao X, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater 2020;24:85─112. [CrossRef]
  • [94] Jia Y, Yin S, Liu B, Zhao H, Yu H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 2019;166:951─960. [CrossRef]
  • [95] Xu J, Jia Y, Liu B, Zhao H, Yu H, et al. Coupling effect of state-of-health and state-of-charge on the mechanical integrity of lithium-ion batteries. Exp Mech 2018;58:633─643. [CrossRef]
  • [96] Wang L, Yin S, Xu J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset. J Power Sources 2019;413:284─292. [CrossRef]
  • [97] Jia Y, Uddin M, Li Y, Xu J. Thermal runaway propagation behavior within 18,650 lithium-ion battery packs: A modeling study. J Energy Storage 2020;31:101668. [CrossRef]
  • [98] Huang P, Ping P, Li K, Chen H, Wang Q, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 2016;183:659─673. [CrossRef]
  • [99] Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 2014;5:5193. [CrossRef]
  • [100] Jaguemont J, Omar N, Abdel-Monem M, et al. Fast-charging investigation on high-power and high-energy density pouch cells with 3D-thermal model development. Appl Therm Eng 2018;128:1282─1296. [CrossRef]
  • [101] De Hoog J, Jaguemont J, Abdel-Monem M, et al. Combining an electrothermal and impedance aging model to investigate thermal degradation caused by fast charging. Energies 2018;11:804. [CrossRef]
  • [102] Wu W, Wang S, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manage 2019;182:262─281. [CrossRef]
  • [103] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng 2019;149:192─212. [CrossRef]
  • [104] Deng T, Zhang G, Ran Y, Liu P. Thermal performance of lithium ion battery pack by using cold plate. Appl Therm Eng 2019;160:114088. [CrossRef]
  • [105] Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy 2016;164:99─114. [CrossRef]
  • [106] Xia G, Cao L, Bi G. A review on battery thermal management in electric vehicle application. J Power Sources 2017;367:90─105. [CrossRef]
  • [107] Liu H, Wei Z, He W, Zhao J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers Manage 2017;150:304─330. [CrossRef]
  • [108] Jaguemont J, Omar N, Van den Bossche P, et al. Phase-change materials (PCM) for automotive applications: A review. Appl Therm Eng 2018;132:308─320. [CrossRef]
  • [109] Deng Y, Feng C, Jiaqiang E, Zhu H, Chen J, Wen M, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl Therm Eng 2018;142:10–29. [CrossRef]
  • [110] Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng. 2019;155:96–109. [CrossRef]
  • [111] Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Appl Therm Eng 2015;80:55–65. [CrossRef]
  • [112] Mohammadian SK, Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. J Power Sources 2015;273:431– 439. [CrossRef]
  • [113] Mohammadian SK, Zhang Y. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Appl Therm Eng 2017;118:375–384. [CrossRef]
  • [114] Liu Y, Zhang J. Design a J-type air-based battery thermal management system through surrogate-based optimization. Appl Energy 2019;252:113426. [CrossRef]
  • [115] Chen K, Wu W, Yuan F, Chen L, Wang S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 2019;167:781–790. [CrossRef]
  • [116] Fan L, Khodadadi JM, Pesaran AA. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources 2013;238:301–312. [CrossRef]
  • [117] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 2013;239:30–36. [CrossRef]
  • [118] Cho GY, Choi JW, Park JH, Cha SW. Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles. Int J Automot Technol 2014;15:795–803. [CrossRef]
  • [119] Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow. Appl Therm Eng 2019;152:445–454. [CrossRef]
  • [120] Na X, Kang H, Wang T, Wang Y. Reverse layered air flow for Li-ion battery thermal management. Appl Therm Eng 2018;143:257–262. [CrossRef]
  • [121] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196:5685–5696. [CrossRef]
  • [122] Tete PR, Gupta MM, Joshi SS. Developments in battery thermal management systems for electric vehicles: A technical review. J Energy Storage 2021;35:102255. [CrossRef]
  • [123] Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. Int J Heat Mass Transf 2015;91:374–384. [CrossRef]
  • [124] Yang X-H, Tan S-C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage 2016;117:577–585. [CrossRef]
  • [125] Hosseinzadeh E, Barai A, Marco J, Jennings PA. A comparative study on different cooling strategies for lithium-ion battery cells. In: Proceedings of The European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2017); 14-16 Mar 2017; Geneva. The European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2017) Proceedings. 2017:1-9.
  • [126] Jarrett A, Kim IY. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. J Power Sources 2014;245:644–655. [CrossRef]
  • [127] Jarrett A, Kim IY. Design optimization of electric vehicle battery cooling plates for thermal performance. J Power Sources 2011;196:10359–10368. [CrossRef]
  • [128] Gou J, Liu W. Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. Appl Therm Eng 2019;152:362–369. [CrossRef]
  • [129] Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int J Heat Mass Transf 2016;101:1093–1102. [CrossRef]
  • [130] Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng. 2016;96:190–199. [CrossRef]
  • [131] Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase‐change material. J Electrochem Soc. 2000;147:3231. [CrossRef]
  • [132] Siddique ARM, Mahmud S, Van Heyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–237. [CrossRef]
  • [133] Ianniciello L, Biwolé PH, Achard P. Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources. 2018;378:383–403. [CrossRef]
  • [134] Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016;129:396–431. [CrossRef]
  • [135] [Referans yok.]
  • [136] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manage 2004;45:1597–1615. [CrossRef]
  • [137] Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hallaj S. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. J Power Sources 2005;142:345–353. [CrossRef]
  • [138] Khateeb SA, Farid MM, Selman JR, Al-Hallaj S. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128:292–307. [CrossRef]
  • [139] Ling Z, Chen J, Fang X, Zhang Z, Xu T, Gao X, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl Energy 2014;121:104–113. [CrossRef]
  • [140] Huang Q, Li X, Zhang G, Zhang J, He F, Li Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Appl Therm Eng 2018;141:1092–1100. [CrossRef]
  • [141] Wang J, Gan Y, Liang J, Tan M, Li Y. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng 2019;151:475–485. [CrossRef]
  • [142] Jiang ZY, Qu ZG. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Appl Energy 2019;242:378–392.
  • [143] Yang X, Yan YY, Mullen D. Recent developments of lightweight, high performance heat pipes. Appl Therm Eng 2012;33–34:1–14. [CrossRef]
  • [144] Zou H, Wang W, Zhang G, Qin F, Tian C, Yan Y. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Convers Manage 2016;118:88–95. [CrossRef]
  • [145] Wang Q, Jiang B, Xue QF, Sun HL, Li B, Zou HM, et al. Experimental investigation on EV battery cooling and heating by heat pipes. Appl Therm Eng 2015;88:54–60. [CrossRef]
  • [146] Tran T-H, Harmand S, Desmet B, Filangi S. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl Therm Eng 2014;63:551–558. [CrossRef]
  • [147] Hong S, Zhang X, Wang S, Zhang Z. Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe. Int J Therm Sci 2015;95:106–114. [CrossRef]
  • [148] Tran T-H, Harmand S, Sahut B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J Power Sources 2014;265:262–272. [CrossRef]
  • [149] Park Y, Jun S, Kim S, Lee D-H. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft. J Mech Sci Technol 2010;24:609–618. [CrossRef]
  • [150] Manno V, Filippeschi S, Mameli M, Romestant C, Ayel V, Bertin Y. Thermal-hydraulic characterization of a flat plate pulsating heat pipe for automotive applications. In: Kabov OA, Amirfazli A, Ajaev VS, et al., editors. Interfacial Phenom Heat Transfer. Vol. 3, No. 4. Begell House; 2015. p. 413-425. [CrossRef]
  • [151] Dörfler S, Walus S, Locke J, Fotouhi A, Auger DJ, et al. Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technol 2021;9:2000694. [CrossRef]
  • [152] Lee J, Tai Kim S, Cao R, Choi N, Liu M, et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 2011;1:34–50. [CrossRef]
  • [153] Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 2018;57:102–120. [CrossRef]

Recent advances in lithium–ion battery utilization: A mini review

Year 2023, Volume: 41 Issue: 6, 1272 - 1296, 29.12.2023

Abstract

Lithium-ion (Li-ion) batteries have become popular recently by performing better than conven-tional batteries. With the advancements in battery technologies, the amount of energy stored by li-ion batteries increases, and important developments occur in control systems. In this article, temperature approaches to the design of advanced electrolyte solutions for Li-ion batteries, elec-trochemical and electrode effects are examined. As a result of the study, it was observed that the amount of energy stored by Li-ion batteries increased with the developments in battery technolo-gies and that there were significant developments in control systems.

References

  • REFERENCES
  • [1] Bruce PG, Scrosati B, Tarascon J. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 2008;47:2930─2946. [CrossRef]
  • [2] Esmaeili J, Jannesari H. Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale. Energy Convers Manage 2017;139:194─205. [CrossRef]
  • [3] Yoshino A. Development of the lithium-ion battery and recent technological trends. In: Lithium-ion batteries. Elsevier; 2014:1─20. [CrossRef]
  • [4] Lyu D, Ren B, Li S. Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mech 2019;230:701─727. [CrossRef]
  • [5] Liao Z, Zhang S, Li K, Zhang G, Habetler TG. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J Power Sources 2019;436:226879. [CrossRef]
  • [6] Bilgen S. Structure and environmental impact of global energy consumption. Renew Sustain Energy Rev. 2014;38:890─902. [CrossRef]
  • [7] Ozturk I, Aslan A, Kalyoncu H. Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy 2010;38:4422─4428. [CrossRef]
  • [8] Abbas Z. Re-assessing the Contribution of Energy Consumption to GDP Per-Capita: Evidence from Developed and Developing Countries. Int J Energy Econ Policy. 2020;10:404─410. [CrossRef]
  • [9] Aslan A. Energy consumption and GDP: The strong relationship in OECD countries. Energy Sources Part B Econ Plan Policy 2013;8:339─345. [CrossRef]
  • [10] Aleklett K, Höök M, Jakobsson K, Lardelli M, Snowden S, Söderbergh B. The peak of the oil age–analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 2010;38:1398─1414. [CrossRef]
  • [11] Chang C-L, McAleer M. The fiction of full BEKK: Pricing fossil fuels and carbon emissions. Finance Res Lett 2019;28:11─19. [CrossRef]
  • [12] Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014;39:748─764. [CrossRef]
  • [13] Aneke M, Wang M. Energy storage technologies and real life applications–A state of the art review. Appl Energy 2016;179:350─377. [CrossRef]
  • [14] Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC. A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 2014;33:532─545. [CrossRef]
  • [15] Naish C, McCubbin I, Edberg O, Harfoot M. Outlook of energy storage technologies. European Parliament, Policy Department, Economic And Scientific Policy; 2008;1-65.
  • [16] Gaines L, Cuenca R. Costs of lithium-ion batteries for vehicles. Argonne National Lab., IL (US); 2000; 761281. [CrossRef]
  • [17] Broussely M. Recent developments on lithium ion batteries at SAFT. J Power Sources. 1999;81:140─143. [CrossRef]
  • [18] Ramadass P, Fang W, Zhang ZJ. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique. J Power Sources 2014;248:769─776. [CrossRef]
  • [19] Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013;226:272─288. [CrossRef]
  • [20] Doughty D, Roth EP. A general discussion of Li Ion battery safety. Electrochem Soc Interface 2012;21:37─44.
  • [21] Ploehn HJ, Ramadass P, White RE. Solvent diffusion model for aging of lithium-ion battery cells. J Electrochem Soc 2004;151:A456. [CrossRef]
  • [22] Hong J, Maleki H, Al Hallaj S, Redey L, Selman JR. Electrochemical‐calorimetric studies of lithium‐ion cells. J Electrochem Soc 1998;145:1489─1501. [CrossRef]
  • [23] Spotnitz RM, Weaver J, Yeduvaka G, Doughty DH, Roth EP. Simulation of abuse tolerance of lithium-ion battery packs. J Power Sources 2007;163:1080─1086. [CrossRef]
  • [24] Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv 2018;4:eaas9820. [CrossRef]
  • [25] Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, et al. Ageing mechanisms in lithium-ion batteries. J Power Sources. 2005;147:269─281. [CrossRef]
  • [26] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources 2003;113:81─100.
  • [27] Gerver RE, Meyers JP. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations. J Electrochem Soc 2011;158:A835. [CrossRef]
  • [28] Abraham DP, Liu J, Chen CH, Hyung YE, Stoll M, Elsen N,et al. Diagnosis of power fade mechanisms in high-power lithium-ion cells. J Power Sources 2003;119-121:511─516. [CrossRef]
  • [29] Abraham DP, Reynolds EM, Schultz PL, Jansen AN, Dees DW. Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J Electrochem Soc 2006;153:A1610. [CrossRef]
  • [30] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011;158:R1. [CrossRef]
  • [31] Guo G, Long B, Cheng B, Zhou S, Xu P, Cao B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources 2010;195:2393─2398. [CrossRef]
  • [32] Ramasamy RP, White RE, Popov BN. Calendar life performance of pouch lithium-ion cells. J Power Sources 2005;141:298─306. [CrossRef]
  • [33] Smith AJ, Dahn HM, Burns JC, Dahn JR. Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 C. J Electrochem Soc 2012;159:A705. [CrossRef]
  • [34] Jossen A. Fundamentals of battery dynamics. J Power Sources 2006;154:530─538. [CrossRef]
  • [35] Fleckenstein M, Bohlen O, Roscher MA, Bäker B. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. J Power Sources 2011;196:4769─4778. [CrossRef]
  • [36] Saw LH, Poon HM, San Thiam H, Cai Z, Chong WT, Pambudi NA, King YJ. Novel thermal management system using mist cooling for lithium-ion battery packs. Appl Energy 2018;223:146─158. [CrossRef]
  • [37] Spotnitz R. Simulation of capacity fade in lithium-ion batteries. J Power Sources 2003;113:72─80. [CrossRef]
  • [38] Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources 2010;195:2961─2968. [CrossRef]
  • [39] Akinlabi AAH, Solyali D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renew Sustain Energy Rev 2020;125:109815. [CrossRef]
  • [40] Farias-Rocha AP, Hassan KMK, Malimata JRR, Sánchez-Cubedo GA, Rojas-Solórzano LR. Solar photovoltaic policy review and economic analysis for on-grid residential installations in the Philippines. J Clean Prod 2019;223:45─56. [CrossRef]
  • [41] Shi Y, Pan X, Li B, Zhao M, Pang H. Co3O4 and its composites for high-performance Li-ion batteries. Chem Eng J 2018;343:427─446. [CrossRef]
  • [42] Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog Nat Sci Mater Int 2018;28:653─666. [CrossRef]
  • [43] Alipour M, Ziebert C, Conte FV, Kizilel R. A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells. Batteries 2020;6:35. [CrossRef]
  • [44] Hawley WB, Li J. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing. J Energy Storage 2019;25:100862. [CrossRef]
  • [45] Laidler KJ. The development of the Arrhenius equation. J Chem Educ 1984;61:494. [CrossRef]
  • [46] Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon 2022;191:448─470. [CrossRef]
  • [47] Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 1999;77:183─197. [CrossRef]
  • [48] Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973;14:589. [CrossRef]
  • [49] Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 2012;202:332─335. [CrossRef]
  • [50] Takada K, Inada T, Kajiyama A, Sasaki H, Kondo S, Watanabe M, Murayama M, Kanno R. Solid-state lithium battery with graphite anode. Solid State Ionics 2003;158:269─274. [CrossRef]
  • [51] Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high‐rate capability of solid‐state lithium batteries by nanoscale interfacial modification. Adv Mater 2006;18:2226─2229. [CrossRef]
  • [52] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun
  • 2007;9:1486─1490. [CrossRef]
  • [53] Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses. Electrochem Solid State Lett 2007;11:A1. [CrossRef]
  • [54] Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 2016;1:1─12. [CrossRef]
  • [55] Chen Z, Qin Y, Ren Y, Lu W, Orendorff C, Roth EP, et al. Multi-scale study of thermal stability of lithiated graphite. Energy Environ Sci. 2011;4:4023─4030. [CrossRef]
  • [56] Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy. 2015;154:74─91. [CrossRef]
  • [57] Guo R, Lu L, Ouyang M, Feng X. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Sci Rep. 2016;6:30248. [CrossRef]
  • [58] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 2014;255:294─301. [CrossRef]
  • [59] Feng X, He X, Ouyang M, Wang L, Lu L, Ren D, et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J Electrochem Soc 2018;165:A3748. [CrossRef]
  • [60] Doughty DH. Vehicle battery safety roadmap guidance. National Renewable Energy Lab.(NREL), Golden, CO (United States). 2012;1-131. [CrossRef]
  • [61] Ceder G, Aydinol MK, Kohan AF. Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci 1997;8:161─169. [CrossRef]
  • [62] El-Sebaii AA, Shalaby SM. Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Convers Manag 2013;74:109116.
  • [63] Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51─65. [CrossRef]
  • [64] Kalantarian MM, Asgari S, Mustarelli P. A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials. J Mater Chem A 2014;2:107─115. [CrossRef]
  • [65] Bocca A, Sassone A, Shin D, Macii A, Macii E, et al. An equation-based battery cycle life model for various battery chemistries. In: Proceedings of the 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC); Daejeon, South Korea. IEEE; 2015. [CrossRef]
  • [66] Ramírez FJ, Honrubia-Escribano A, Gómez-Lázaro E, Pham DT. Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017;102:440─452. [CrossRef]
  • [67] Lu Y, Yu L, Lou XWD. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018;4:972─996. [CrossRef]
  • [68] Stephan AM, Kumar TP, Ramesh R, Thomas S, Jeong SK, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater Sci Eng A 2006;430:132─137. [CrossRef]
  • [69] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18:252─264. [CrossRef]
  • [70] Ferg E, Gummow RJ, De Kock A, Thackeray MM. Spinel anodes for lithium‐ion batteries. J Electrochem Soc 1994;141:L147─L150. [CrossRef]
  • [71] Johnston DC. Superconducting and normal state properties of Li1+xTi2−xO4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility. J Low Temp Phys 1976;25:145─175. [CrossRef]
  • [72] Rossi Albertini V, Perfetti P, Ronci F, Scrosati B. Structural changes of electrodic materials in electrochemical cells observed by in situ energy dispersive X-ray diffraction (EDXD). Chem Mater 2001;13:450─455. [CrossRef]
  • [73] Mahmood N, Tang T, Hou Y. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 2016;6:1600374. [CrossRef]
  • [74] Reddy MV, Subba Rao GV, Chowdari BVR. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 2013;113:5364─5457. [CrossRef]
  • [75] Roy P, Srivastava SK. Nanostructured anode materials for lithium ion batteries. J Mater Chem A 2015;3:2454─2484. [CrossRef]
  • [76] Guan BY, Yu L, Li J, Lou XWD. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci Adv 2016;2:e1501554. [CrossRef]
  • [77] Yu L, Wu HB, Lou XW. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 2013;25:2296─2300. [CrossRef]
  • [78] Zhu G-N, Wang Y-G, Xia Y-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 2012;5:6652─6667. [CrossRef]
  • [79] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047─2051. [CrossRef]
  • [80] Funabiki A, Inaba M, Abe T, Ogumi Z. Stage transformation of lithium‐graphite intercalation compounds caused by electrochemical lithium intercalation. J Electrochem Soc 1999;146:2443─2448. [CrossRef]
  • [81] Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 1997;144:L208─L210. [CrossRef]
  • [82] Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S. Parameter analysis of a practical lithium-and sodium-air electric vehicle battery. J Power Sources 2011;196:6835─6840. [CrossRef]
  • [83] Peled E, Menkin S. Review—SEI: Past, Present and Future. J Electrochem Soc 2017;164:A1703─A1719. [CrossRef]
  • [84] Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage 2020;31:101551. [CrossRef]
  • [85] Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sustain Energy Rev 2016;64:106─128. [CrossRef]
  • [86] Liu B, Jia Y, Li J, Yin S, Yuan C, Hu Z, et al. Safety issues caused by internal short circuits in lithium-ion batteries. J Mater Chem A 2018;6:21475─21484. [CrossRef]
  • [87] Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 2016;9:3221─3229. [CrossRef]
  • [88] Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 2012;208:210─224. [CrossRef]
  • [89] Liu B, Zhang J, Zhang C, Xu J. Mechanical integrity of 18650 lithium-ion battery module: packing density and packing mode. Eng Fail Anal 2018;91:315─326. [CrossRef]
  • [90] Liu B, Zhao H, Yu H, Li J, Xu J. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading. Electrochim Acta 2017;256:172─184. [CrossRef]
  • [91] Yuan C, Wang L, Yin S, Xu J. Generalized separator failure criteria for internal short circuit of lithium-ion battery. J Power Sources 2020;467:228360. [CrossRef]
  • [92] Zhu J, Wierzbicki T, Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 2018;378:153─168. [CrossRef]
  • [93] Liu B, Jia Y, Yuan C, Wang L, Gao X, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater 2020;24:85─112. [CrossRef]
  • [94] Jia Y, Yin S, Liu B, Zhao H, Yu H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 2019;166:951─960. [CrossRef]
  • [95] Xu J, Jia Y, Liu B, Zhao H, Yu H, et al. Coupling effect of state-of-health and state-of-charge on the mechanical integrity of lithium-ion batteries. Exp Mech 2018;58:633─643. [CrossRef]
  • [96] Wang L, Yin S, Xu J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset. J Power Sources 2019;413:284─292. [CrossRef]
  • [97] Jia Y, Uddin M, Li Y, Xu J. Thermal runaway propagation behavior within 18,650 lithium-ion battery packs: A modeling study. J Energy Storage 2020;31:101668. [CrossRef]
  • [98] Huang P, Ping P, Li K, Chen H, Wang Q, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 2016;183:659─673. [CrossRef]
  • [99] Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 2014;5:5193. [CrossRef]
  • [100] Jaguemont J, Omar N, Abdel-Monem M, et al. Fast-charging investigation on high-power and high-energy density pouch cells with 3D-thermal model development. Appl Therm Eng 2018;128:1282─1296. [CrossRef]
  • [101] De Hoog J, Jaguemont J, Abdel-Monem M, et al. Combining an electrothermal and impedance aging model to investigate thermal degradation caused by fast charging. Energies 2018;11:804. [CrossRef]
  • [102] Wu W, Wang S, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manage 2019;182:262─281. [CrossRef]
  • [103] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng 2019;149:192─212. [CrossRef]
  • [104] Deng T, Zhang G, Ran Y, Liu P. Thermal performance of lithium ion battery pack by using cold plate. Appl Therm Eng 2019;160:114088. [CrossRef]
  • [105] Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy 2016;164:99─114. [CrossRef]
  • [106] Xia G, Cao L, Bi G. A review on battery thermal management in electric vehicle application. J Power Sources 2017;367:90─105. [CrossRef]
  • [107] Liu H, Wei Z, He W, Zhao J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers Manage 2017;150:304─330. [CrossRef]
  • [108] Jaguemont J, Omar N, Van den Bossche P, et al. Phase-change materials (PCM) for automotive applications: A review. Appl Therm Eng 2018;132:308─320. [CrossRef]
  • [109] Deng Y, Feng C, Jiaqiang E, Zhu H, Chen J, Wen M, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl Therm Eng 2018;142:10–29. [CrossRef]
  • [110] Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng. 2019;155:96–109. [CrossRef]
  • [111] Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Appl Therm Eng 2015;80:55–65. [CrossRef]
  • [112] Mohammadian SK, Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. J Power Sources 2015;273:431– 439. [CrossRef]
  • [113] Mohammadian SK, Zhang Y. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Appl Therm Eng 2017;118:375–384. [CrossRef]
  • [114] Liu Y, Zhang J. Design a J-type air-based battery thermal management system through surrogate-based optimization. Appl Energy 2019;252:113426. [CrossRef]
  • [115] Chen K, Wu W, Yuan F, Chen L, Wang S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 2019;167:781–790. [CrossRef]
  • [116] Fan L, Khodadadi JM, Pesaran AA. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources 2013;238:301–312. [CrossRef]
  • [117] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 2013;239:30–36. [CrossRef]
  • [118] Cho GY, Choi JW, Park JH, Cha SW. Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles. Int J Automot Technol 2014;15:795–803. [CrossRef]
  • [119] Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow. Appl Therm Eng 2019;152:445–454. [CrossRef]
  • [120] Na X, Kang H, Wang T, Wang Y. Reverse layered air flow for Li-ion battery thermal management. Appl Therm Eng 2018;143:257–262. [CrossRef]
  • [121] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196:5685–5696. [CrossRef]
  • [122] Tete PR, Gupta MM, Joshi SS. Developments in battery thermal management systems for electric vehicles: A technical review. J Energy Storage 2021;35:102255. [CrossRef]
  • [123] Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. Int J Heat Mass Transf 2015;91:374–384. [CrossRef]
  • [124] Yang X-H, Tan S-C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage 2016;117:577–585. [CrossRef]
  • [125] Hosseinzadeh E, Barai A, Marco J, Jennings PA. A comparative study on different cooling strategies for lithium-ion battery cells. In: Proceedings of The European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2017); 14-16 Mar 2017; Geneva. The European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2017) Proceedings. 2017:1-9.
  • [126] Jarrett A, Kim IY. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. J Power Sources 2014;245:644–655. [CrossRef]
  • [127] Jarrett A, Kim IY. Design optimization of electric vehicle battery cooling plates for thermal performance. J Power Sources 2011;196:10359–10368. [CrossRef]
  • [128] Gou J, Liu W. Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. Appl Therm Eng 2019;152:362–369. [CrossRef]
  • [129] Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int J Heat Mass Transf 2016;101:1093–1102. [CrossRef]
  • [130] Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng. 2016;96:190–199. [CrossRef]
  • [131] Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase‐change material. J Electrochem Soc. 2000;147:3231. [CrossRef]
  • [132] Siddique ARM, Mahmud S, Van Heyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–237. [CrossRef]
  • [133] Ianniciello L, Biwolé PH, Achard P. Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources. 2018;378:383–403. [CrossRef]
  • [134] Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016;129:396–431. [CrossRef]
  • [135] [Referans yok.]
  • [136] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manage 2004;45:1597–1615. [CrossRef]
  • [137] Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hallaj S. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. J Power Sources 2005;142:345–353. [CrossRef]
  • [138] Khateeb SA, Farid MM, Selman JR, Al-Hallaj S. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128:292–307. [CrossRef]
  • [139] Ling Z, Chen J, Fang X, Zhang Z, Xu T, Gao X, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl Energy 2014;121:104–113. [CrossRef]
  • [140] Huang Q, Li X, Zhang G, Zhang J, He F, Li Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Appl Therm Eng 2018;141:1092–1100. [CrossRef]
  • [141] Wang J, Gan Y, Liang J, Tan M, Li Y. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng 2019;151:475–485. [CrossRef]
  • [142] Jiang ZY, Qu ZG. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Appl Energy 2019;242:378–392.
  • [143] Yang X, Yan YY, Mullen D. Recent developments of lightweight, high performance heat pipes. Appl Therm Eng 2012;33–34:1–14. [CrossRef]
  • [144] Zou H, Wang W, Zhang G, Qin F, Tian C, Yan Y. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Convers Manage 2016;118:88–95. [CrossRef]
  • [145] Wang Q, Jiang B, Xue QF, Sun HL, Li B, Zou HM, et al. Experimental investigation on EV battery cooling and heating by heat pipes. Appl Therm Eng 2015;88:54–60. [CrossRef]
  • [146] Tran T-H, Harmand S, Desmet B, Filangi S. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl Therm Eng 2014;63:551–558. [CrossRef]
  • [147] Hong S, Zhang X, Wang S, Zhang Z. Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe. Int J Therm Sci 2015;95:106–114. [CrossRef]
  • [148] Tran T-H, Harmand S, Sahut B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J Power Sources 2014;265:262–272. [CrossRef]
  • [149] Park Y, Jun S, Kim S, Lee D-H. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft. J Mech Sci Technol 2010;24:609–618. [CrossRef]
  • [150] Manno V, Filippeschi S, Mameli M, Romestant C, Ayel V, Bertin Y. Thermal-hydraulic characterization of a flat plate pulsating heat pipe for automotive applications. In: Kabov OA, Amirfazli A, Ajaev VS, et al., editors. Interfacial Phenom Heat Transfer. Vol. 3, No. 4. Begell House; 2015. p. 413-425. [CrossRef]
  • [151] Dörfler S, Walus S, Locke J, Fotouhi A, Auger DJ, et al. Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technol 2021;9:2000694. [CrossRef]
  • [152] Lee J, Tai Kim S, Cao R, Choi N, Liu M, et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 2011;1:34–50. [CrossRef]
  • [153] Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 2018;57:102–120. [CrossRef]
There are 155 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Reviews
Authors

Khandan Roshanaeı 0000-0002-1469-8812

Edip Taşkesen 0000-0002-3052-9883

Mehmet Özkaymak 0000-0002-4575-8988

Publication Date December 29, 2023
Submission Date November 10, 2021
Published in Issue Year 2023 Volume: 41 Issue: 6

Cite

Vancouver Roshanaeı K, Taşkesen E, Özkaymak M. Recent advances in lithium–ion battery utilization: A mini review. SIGMA. 2023;41(6):1272-96.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/