Research Article
BibTex RIS Cite
Year 2023, Volume: 41 Issue: 2, 288 - 301, 30.04.2023

Abstract

References

  • REFERENCES
  • [1] Van Deventer JSJ, Provis JL, Duxson P, Brice DG. Chemical research and climate change as drivers in the commercial adoption of alkali activated mate-rials. Waste Biomass Valorizat 2010;1:145−155.[CrossRef]
  • [2] Bakis A, Isik E, Avsar E. The usability of pumice con-crete produced by different kinds of concrete mixing water in construction of rigid pavements. Fresenius Environ Bull 2019;28:3649−3657. [CrossRef].
  • [3] Bayraktar AC, Avsar E, Toroz I, Alp K, Hanedar A. Stabilization and solidification of electric arc fur-nace dust originating from steel industry by using low grade MgO. Arch Environ Prot 2015;41:62−66.[CrossRef]
  • [4] Uslu E, Avşar E, Toröz İ. Otomotiv endüstrisi kimyasal arıtma çamurlarının tuğla üretiminde kullanılabil-irliğinin ürün kalitesi yönünden araştırılması. Sigma J Eng Nat Sci 2010;3:141−148. [Turkish]
  • [5] Chi M, Huang R. Inding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater 2013;40:291−298. [CrossRef]
  • [6] Marjanović N, Komljenović M, Baščarević Z, Nikolić V, Petrović R. Physical-mechanical and microstruc-tural properties of alkali-activated fly ash-blast furnace slag blends. Ceram Int 2015;41:1421−1435. [CrossRef]
  • [7] Zarina Y, Mohd Mustafa ABA, Kamarudin H, Khairul Nizar I, Andrei Victor S, Petricǎ V, et al. Chemical and physical characterization of boiler ash from palm oil industry waste for geopolymer com-posite. Rev Chim 2013;64:1408−1412.
  • [8] Kim SH, Ryu GS, Koh KT, Lee JH. Flowability and strength development characteristics of bot-tom ash based geopolymer. Int J Civ Environ Eng 2012;6:852−857.
  • [9] Revathi V, Saravanakumar R, Thaarrini J. Effect of molar ratio of SiO2/Na2O, Na2SiO3/NaOH ratio and curing mode on the compressive strength of ground bottom ash geopolymer mortar. Int J Earth Sci Eng 2014;7:1511−1516.
  • [10] Guo L, Wu YY, Xu F, Song XT, Ye JY, Duan P, et al. Sulfate resistance of hybrid fiber reinforced metaka-olin geopolymer composites. Compos Part B Eng 2020;183:1−10. [CrossRef]
  • [11] Santhanam M, Cohen MD, Olek J. Mechanism of sulfate attack: a fresh look. Cem Concr Res 2003;33:341−346. [CrossRef]
  • [12] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 2005;35:1233−1246. [CrossRef]
  • [13] Fernandez-Jimenez A, García-Lodeiro I, Palomo A. Durability of alkali activated fly ash cementitious materials. J Mater Sci 2007;42:3055−3065. [CrossRef]
  • [14] Ionescu BA, Lăzărescu AV, Hegyi A. The possibil-ity of using slag for the production of geopolymer materials and its influence on mechanical perfor-mances- A review. Proceedings 2020;63:30. [CrossRef]
  • [15] Thaarrini J, Ramasamy V. Properties of foundry sand, ground granulated blast furnace slag and bottom ash based geopolymers under ambient conditions. Period Polytech Civ Eng 2016;60:159−168. [CrossRef]
  • [16] Qiu J, Zhao Y, Xing J, Sun X. Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator con- centration. Adv Mater Sci Eng 2019;2019:2028109.[CrossRef]
  • [17] Nis A, Altundal MB. Mechanical strength degrada-tion of slag and fly ash based geopolymer specimens exposed to sulfuric acid attack. Sigma J Eng Nat Sci 2019;37:917−926.
  • [18] Aygormez, Y. Performance of ambient and freez-ing-thawing cured metazeolite and slag based geo-polymer composites against elevated temperatures. Rev Constr 2021;20:145−162. [CrossRef]
  • [19] Wongsa A, Boonserm K, Waisurasingha C, Sata V, Chindaprasirt P. Use of municipal solid waste incin-erator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod 2017;148:49−59.[CrossRef]
  • [20] Kumar ML, Revathi V. Metakaolin bottom ash blend geopolymer mortar-A feasibility study. Constr Build Mater 2016;114:1−5. [CrossRef]
  • [21] Deraman LM, Al Bakri Abdullah MM, Liew YM, Hussin K, Yahya Z. A review on processing and properties of bottom ash based geopolymer materi-als. Key Eng Mater 2015;660:3−8. [CrossRef]
  • [22] Hosseini S, Brake NA, Nikookar M, Gunaydin-Sen O, Snyder H. A. (2021). Mechanochemically acti-vated bottom ash-fly ash geopolymer. Cem Concr Compos 2021;118:103976. [CrossRef]
  • [23] Duan P, Yan C, Zhou W. Influence of partial replacement of fly ash by metakaolin on mechan-ical properties and microstructure of fly ash geo-polymer paste exposed to sulfate attack. Ceram Int 2016;42:3504−3517. [CrossRef]
  • [24] Elyamany HE, Abd Elmoaty M, Elshaboury AM. Magnesium sulfate resistance of geopolymer mortar. Constr Build Mater 2018;184:111−127. [CrossRef]
  • [25] Thokchom S, Ghosh P, Ghosh S. Performance of fly ash based geopolymer mortars in sulphate solution. J Eng Sci Technol Rev 2010;3:36−40. [CrossRef]
  • [26] Zhang HY, Kodur V, Wu B, Cao L, Qi SL. Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash. J Mater Civ Eng 2016;28:04015092. [CrossRef]
  • [27] Škvára F, Jílek T, Kopecký L. Geopolymer materials based on fly ash. Ceram Silik 2005;49:195−204.
  • [28] Rashidian-Dezfouli H, Rangaraju PR. A compara-tive study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution. Constr Build Mater 2017;153:996−1009. [CrossRef]
  • [29] Kwasny J, Aiken TA, Soutsos MN, McIntosh JA, Cleland DJ. Sulfate and acid resistance of litho-marge-based geopolymer mortars. Constr Build Mater 2018;166:537−553. [CrossRef]
  • [30] Müllauer W, Beddoe RE, Heinz D. Sulfate attack expansion mechanisms. Cem Concr Res 2013;52:208−215. [CrossRef]
  • [31] Maes M, De Belie N. Resistance of concrete and mor-tar against combined attack of chloride and sodium sulphate. Cem Concr Compos 2014;53:59−72. [CrossRef]
  • [32] Sata V, Sathonsaowaphak A, Chindaprasirt P. Resistance of lignite bottom ash geopolymer mor-tar to sulfate and sulfuric acid attack. Cem Concr Compos 2012;34:700−708. [CrossRef]
  • [33] Karakoc MB, Turkmen I, Maras MM, Kantarci F, Demirboga R. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 2016;42:1254−1260. [CrossRef]
  • [34] Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao HT. Sulfate resistance of blended cements con-taining fly ash and rice husk ash. Constr Build Mater 2007;21:1356−1361. [CrossRef]
  • [35] Ren D, Yan C, Duan P, Zhang Z, Li L, Yan Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopoly-mer composites under sulfate and chloride attack. Constr Build Mater 2017;134:56−66. [CrossRef]
  • [36] Arslan AA, Uysal M, Yılmaz A, Al-mashhadani MM, Canpolat O, Sahin F, et al. Influence of wetting-dry-ing curing system on the performance of fiber rein- forced metakaolin-based geopolymer composites. Constr Build Mater 2019;225:909−926. [CrossRef]
  • [37] He J, Zhang J, Yu Y, Zhang G. The strength and micro-structure of two geopolymers derived from metaka-olin and red mud-fly ash admixture: a comparative study. Constr Build Mater 2012;30:80−91. [CrossRef]
  • [38] Salami BA, Johari MAM, Ahmad ZA, Maslehuddin M. Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate envi-ronment. Constr Build Mater 2017;131:229−244. [CrossRef]
  • [39] Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JS. Microstructural changes in alkali acti-vated fly ash/slag geopolymers with sulfate expo-sure. Mater Struct 2013;46:361−373. [CrossRef]
  • [40] Aygormez Y, Canpolat O, Al-mashhadani MM, Uysal M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer compos-ites. Constr Build Mater 2020;235:117502. [CrossRef]
  • [41] Atahan HN, Arslan KM. Improved durability of cement mortars exposed to external sulfate attack: The role of nano & micro additives. Sustain Cities Soc 2016;22:40−48. [CrossRef]
  • [42] Yıldırım Ozen M, Dur F, Kunt K, Derun E. Evaluation of gold mine tailings in cement mortar: investiga-tion of effects of chemical admixtures. Sigma J Eng Nat Sci 2020;38:2155−2168.

Sulfate and chloride resistance of bottom ash doped slag-based geopolymer composites

Year 2023, Volume: 41 Issue: 2, 288 - 301, 30.04.2023

Abstract

Within the scope of this study, while the performance of slag (S)-based geopolymer mortars with bottom ash (BA) reinforcement was examined, chloride and sulfate attack tests were also carried out to investigate their durability properties. For the durability tests of geopolymer composites, sodium chloride (NaCl) and sodium and magnesium sulfate (Na2SO4 and MgSO4) solutions were preferred for a period of 10 months and a 15% solution percentage. The perfor-mance of geopolymer composites after the effect of durability was determined by flexural and compressive strengths, SEM and XRD analyses, weight changes, and visual inspection. When the results obtained were evaluated, it was seen that 15% BA substitution provided the highest compressive strength. There was variation in durability tests. At the end of the 2-month pe-riod, there was an increase in the compressive strength, while a decrease was observed at the end of the 6-month period. The main factor that created these fluctuations was that alkali ions migrated from sample to solution while the solutions were diffusing into the matrix. Gypsum and ettringite formed in the pores were effective in the losses that occurred in the 6-month period. In addition, the alkali ions leaving the sample and passing into the solution effectively accelerated the formation of micro cracks. Thus, strength losses were observed.

References

  • REFERENCES
  • [1] Van Deventer JSJ, Provis JL, Duxson P, Brice DG. Chemical research and climate change as drivers in the commercial adoption of alkali activated mate-rials. Waste Biomass Valorizat 2010;1:145−155.[CrossRef]
  • [2] Bakis A, Isik E, Avsar E. The usability of pumice con-crete produced by different kinds of concrete mixing water in construction of rigid pavements. Fresenius Environ Bull 2019;28:3649−3657. [CrossRef].
  • [3] Bayraktar AC, Avsar E, Toroz I, Alp K, Hanedar A. Stabilization and solidification of electric arc fur-nace dust originating from steel industry by using low grade MgO. Arch Environ Prot 2015;41:62−66.[CrossRef]
  • [4] Uslu E, Avşar E, Toröz İ. Otomotiv endüstrisi kimyasal arıtma çamurlarının tuğla üretiminde kullanılabil-irliğinin ürün kalitesi yönünden araştırılması. Sigma J Eng Nat Sci 2010;3:141−148. [Turkish]
  • [5] Chi M, Huang R. Inding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater 2013;40:291−298. [CrossRef]
  • [6] Marjanović N, Komljenović M, Baščarević Z, Nikolić V, Petrović R. Physical-mechanical and microstruc-tural properties of alkali-activated fly ash-blast furnace slag blends. Ceram Int 2015;41:1421−1435. [CrossRef]
  • [7] Zarina Y, Mohd Mustafa ABA, Kamarudin H, Khairul Nizar I, Andrei Victor S, Petricǎ V, et al. Chemical and physical characterization of boiler ash from palm oil industry waste for geopolymer com-posite. Rev Chim 2013;64:1408−1412.
  • [8] Kim SH, Ryu GS, Koh KT, Lee JH. Flowability and strength development characteristics of bot-tom ash based geopolymer. Int J Civ Environ Eng 2012;6:852−857.
  • [9] Revathi V, Saravanakumar R, Thaarrini J. Effect of molar ratio of SiO2/Na2O, Na2SiO3/NaOH ratio and curing mode on the compressive strength of ground bottom ash geopolymer mortar. Int J Earth Sci Eng 2014;7:1511−1516.
  • [10] Guo L, Wu YY, Xu F, Song XT, Ye JY, Duan P, et al. Sulfate resistance of hybrid fiber reinforced metaka-olin geopolymer composites. Compos Part B Eng 2020;183:1−10. [CrossRef]
  • [11] Santhanam M, Cohen MD, Olek J. Mechanism of sulfate attack: a fresh look. Cem Concr Res 2003;33:341−346. [CrossRef]
  • [12] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 2005;35:1233−1246. [CrossRef]
  • [13] Fernandez-Jimenez A, García-Lodeiro I, Palomo A. Durability of alkali activated fly ash cementitious materials. J Mater Sci 2007;42:3055−3065. [CrossRef]
  • [14] Ionescu BA, Lăzărescu AV, Hegyi A. The possibil-ity of using slag for the production of geopolymer materials and its influence on mechanical perfor-mances- A review. Proceedings 2020;63:30. [CrossRef]
  • [15] Thaarrini J, Ramasamy V. Properties of foundry sand, ground granulated blast furnace slag and bottom ash based geopolymers under ambient conditions. Period Polytech Civ Eng 2016;60:159−168. [CrossRef]
  • [16] Qiu J, Zhao Y, Xing J, Sun X. Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator con- centration. Adv Mater Sci Eng 2019;2019:2028109.[CrossRef]
  • [17] Nis A, Altundal MB. Mechanical strength degrada-tion of slag and fly ash based geopolymer specimens exposed to sulfuric acid attack. Sigma J Eng Nat Sci 2019;37:917−926.
  • [18] Aygormez, Y. Performance of ambient and freez-ing-thawing cured metazeolite and slag based geo-polymer composites against elevated temperatures. Rev Constr 2021;20:145−162. [CrossRef]
  • [19] Wongsa A, Boonserm K, Waisurasingha C, Sata V, Chindaprasirt P. Use of municipal solid waste incin-erator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod 2017;148:49−59.[CrossRef]
  • [20] Kumar ML, Revathi V. Metakaolin bottom ash blend geopolymer mortar-A feasibility study. Constr Build Mater 2016;114:1−5. [CrossRef]
  • [21] Deraman LM, Al Bakri Abdullah MM, Liew YM, Hussin K, Yahya Z. A review on processing and properties of bottom ash based geopolymer materi-als. Key Eng Mater 2015;660:3−8. [CrossRef]
  • [22] Hosseini S, Brake NA, Nikookar M, Gunaydin-Sen O, Snyder H. A. (2021). Mechanochemically acti-vated bottom ash-fly ash geopolymer. Cem Concr Compos 2021;118:103976. [CrossRef]
  • [23] Duan P, Yan C, Zhou W. Influence of partial replacement of fly ash by metakaolin on mechan-ical properties and microstructure of fly ash geo-polymer paste exposed to sulfate attack. Ceram Int 2016;42:3504−3517. [CrossRef]
  • [24] Elyamany HE, Abd Elmoaty M, Elshaboury AM. Magnesium sulfate resistance of geopolymer mortar. Constr Build Mater 2018;184:111−127. [CrossRef]
  • [25] Thokchom S, Ghosh P, Ghosh S. Performance of fly ash based geopolymer mortars in sulphate solution. J Eng Sci Technol Rev 2010;3:36−40. [CrossRef]
  • [26] Zhang HY, Kodur V, Wu B, Cao L, Qi SL. Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash. J Mater Civ Eng 2016;28:04015092. [CrossRef]
  • [27] Škvára F, Jílek T, Kopecký L. Geopolymer materials based on fly ash. Ceram Silik 2005;49:195−204.
  • [28] Rashidian-Dezfouli H, Rangaraju PR. A compara-tive study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution. Constr Build Mater 2017;153:996−1009. [CrossRef]
  • [29] Kwasny J, Aiken TA, Soutsos MN, McIntosh JA, Cleland DJ. Sulfate and acid resistance of litho-marge-based geopolymer mortars. Constr Build Mater 2018;166:537−553. [CrossRef]
  • [30] Müllauer W, Beddoe RE, Heinz D. Sulfate attack expansion mechanisms. Cem Concr Res 2013;52:208−215. [CrossRef]
  • [31] Maes M, De Belie N. Resistance of concrete and mor-tar against combined attack of chloride and sodium sulphate. Cem Concr Compos 2014;53:59−72. [CrossRef]
  • [32] Sata V, Sathonsaowaphak A, Chindaprasirt P. Resistance of lignite bottom ash geopolymer mor-tar to sulfate and sulfuric acid attack. Cem Concr Compos 2012;34:700−708. [CrossRef]
  • [33] Karakoc MB, Turkmen I, Maras MM, Kantarci F, Demirboga R. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 2016;42:1254−1260. [CrossRef]
  • [34] Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao HT. Sulfate resistance of blended cements con-taining fly ash and rice husk ash. Constr Build Mater 2007;21:1356−1361. [CrossRef]
  • [35] Ren D, Yan C, Duan P, Zhang Z, Li L, Yan Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopoly-mer composites under sulfate and chloride attack. Constr Build Mater 2017;134:56−66. [CrossRef]
  • [36] Arslan AA, Uysal M, Yılmaz A, Al-mashhadani MM, Canpolat O, Sahin F, et al. Influence of wetting-dry-ing curing system on the performance of fiber rein- forced metakaolin-based geopolymer composites. Constr Build Mater 2019;225:909−926. [CrossRef]
  • [37] He J, Zhang J, Yu Y, Zhang G. The strength and micro-structure of two geopolymers derived from metaka-olin and red mud-fly ash admixture: a comparative study. Constr Build Mater 2012;30:80−91. [CrossRef]
  • [38] Salami BA, Johari MAM, Ahmad ZA, Maslehuddin M. Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate envi-ronment. Constr Build Mater 2017;131:229−244. [CrossRef]
  • [39] Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JS. Microstructural changes in alkali acti-vated fly ash/slag geopolymers with sulfate expo-sure. Mater Struct 2013;46:361−373. [CrossRef]
  • [40] Aygormez Y, Canpolat O, Al-mashhadani MM, Uysal M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer compos-ites. Constr Build Mater 2020;235:117502. [CrossRef]
  • [41] Atahan HN, Arslan KM. Improved durability of cement mortars exposed to external sulfate attack: The role of nano & micro additives. Sustain Cities Soc 2016;22:40−48. [CrossRef]
  • [42] Yıldırım Ozen M, Dur F, Kunt K, Derun E. Evaluation of gold mine tailings in cement mortar: investiga-tion of effects of chemical admixtures. Sigma J Eng Nat Sci 2020;38:2155−2168.
There are 43 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

Yurdakul Aygörmez 0000-0001-7405-2450

Publication Date April 30, 2023
Submission Date April 16, 2021
Published in Issue Year 2023 Volume: 41 Issue: 2

Cite

Vancouver Aygörmez Y. Sulfate and chloride resistance of bottom ash doped slag-based geopolymer composites. SIGMA. 2023;41(2):288-301.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/