Research Article
BibTex RIS Cite
Year 2023, Volume: 41 Issue: 2, 344 - 355, 30.04.2023

Abstract

References

  • REFERENCES
  • [1] Qureshi S, Yusuf A, Aziz S. Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations. Phys Scr 2021;96:114002. [CrossRef]
  • [2] Memon Z, Qureshi S, Memon BR. Assessing the role of quarantine and isolation as control strategies faor COVID-19 outbreak: a case study. Chaos Solit Fractals 2021;144:110655. [CrossRef]
  • [3] Qureshi S, Yusuf A. Fractional derivatives applied to MSEIR problems: Comparative study with real world data. Eur Phys J Plus 2019;134:1−13. [CrossRef]
  • [4] Qureshi S, Fractal-fractional differentiation for the modeling and mathematical analysis of non- lin-ear diarrhea transmission dynamics under the use of real data. Chaos Solit Fractals 2020;136:109812.[CrossRef]
  • [5] Fisher RA. The wave of advance of advantageous genes. Ann Eugen 1936;7:355−369. [CrossRef]
  • [6] Kolmogorov A, Petrovskii I, Piskunov N. Study of a diffusion equation that ıs related to the growth of a quality of matter and ıts application to a biological problem. Moscow Univ Mathem Bull 1937;1:1−26.
  • [7] Canosa J. On a nonlinear diffusion equation describ-ing population growth. J Res Dev 1973;17:307−313.[CrossRef]
  • [8] Gazdag J, Canosa J. Numerical solution of Fisher's equation. J Appl Prob 1974;11:445−457. [CrossRef]
  • [9] Tang S, Weber RO. Numerical study of Fisher's equa-tion by a Petrov-Galerkin finite element method. J Austral Math Soc Ser B 1991;33:27−38. [CrossRef] [10] Qiu Y, Sloan DM. Numerical solution of Fisher's equation using a moving mesh method. J Comput Phys 1998;146:726−746. [CrossRef]
  • [11] Zhao S, Wei GW. Comparison of the discrete sin-gular convolution and three other numerical schemes for solving Fisher's equation. J Sci Comput 2003;25:127−147. [CrossRef]
  • [12] Cattani C, Kudreyko A. Mutiscale analysis of the fisher equation. Lect Notes Comput Sci 2008;5072: 1171−1180. [CrossRef]
  • [13] Mittal RC, Arora G. Efficient numerical solution of Fisher's equation by using B-spline method. Int. J Comput Math 2010;87:3039−3051. [CrossRef]
  • [14] Dagg II, Sahin A, Korkmaz A. Numerical investigation of the solution of Fisher's equation via the B- spline Galerkin method. Numer Methods Partial Differ Equ 2010;26:1483−1503. [CrossRef]
  • [15] Mittal RC, Jain R. Cubic B-splines collocation method for solving nonlinear parabolic partial dif-ferential equations with Neumann boundary con-ditions. commun Nonlinear sci. Numer.Simulat 2012;17:4616−4625. [CrossRef]
  • [16] Mittal RC, Jain RK. Numerical solutions of nonlinear Fisher's reaction-diffusion equation with mod-ified cubic B- spline collocation method. Math Sci 2013;7:1−10. [CrossRef]
  • [17] Sahin A, Dagg II, Saka B. A B-spline algorithm for the numerical solution of Fisher's equation. Kybernetes 2008;37:326−342. [CrossRef]
  • [18] Sahin A, Ozmen O. Usage of higher order B-splines in numerical solution of Fishers equation. Int J Nonlinear Sci 2014;17:241−253.
  • [19] Ersoy O, Dagg I.. The extended B-spline collocation method for numerical solutions of Fishers equation. AIP Conf Proc 2015;1648:370011. [CrossRef]
  • [20] Dag I, Ersoy O. The exponential cubic B-spline algorithm for Fisher equation. Chaos Solit Fractals 2016;86:101−106. [CrossRef]
  • [21] Rohila R, Mittal R.C. Numerical study of reac-tion diffusion Fisher's equation by fourth order cubic B-spline collocation method. Math Sci 2018;12:79−89. [CrossRef]
  • [22] Tamsir M, Srivastava VK, Dhiman N, Chauhan A. Numerical computation of nonlinear fisher's reac-tion-diffusion equation with exponential modified cubic b-spline differential quadrature method. Int. J Appl Comput Math 2018;4:1−13. [CrossRef]
  • [23] Dhiman N, Chauhan A, Tamsir M, Chauhan A. Numerical simulation of Fisher's type equation via a collocation technique based on re-defined quintic B-splines. Multidiscip Model Mater Struct 2020;16:1117−1130. [CrossRef]
  • [24] Kapoor M, Joshi V. Solution of non-linear Fisher's reaction-diffusion equation by using Hyperbolic B-spline based differential quadrature method. J Phys Conf Ser 2020;1531:012064. [CrossRef]
  • [25] Madzvamuse A. Time stepping schemes for moving grid finite elements applied to reaction- diffusion systems on fixed and growing domains. J Comput Phys 2006;214:239−263. [CrossRef]
  • [26] Hundsdorfer W, Verwer J. Numerical solution of time-dependent advection-diffusion- reaction equations . 1st ed. Berlin: Springer; 2003. [CrossRef]
  • [27] Seydaogglu M, Blanes S. High-order splitting meth-ods for separable non-autonomous parabolic equa-tions. Appl Numer Math 2014;84:22−32. [CrossRef]
  • [28] Strang G. On the construction and comparison of difference schemes. J Numer Anal 1968;5:506−517.[CrossRef]

Numerical approach of fisher's equation with strang splitting technique using finite element galerkin method

Year 2023, Volume: 41 Issue: 2, 344 - 355, 30.04.2023

Abstract

In the present paper, non-linear Fisher’s reaction-diffusion equation is solved numerically by using Strang splitting technique with the help of Galerkin method combined with quadratic B-spline base functions. For this aim, Fisher’s equation is split into two sub-equations with respect to time such that one is linear and the other one is nonlinear. Galerkin method using quadratic B-spline finite elements is applied to each sub-equation. To check the correctness and reliability of the presented approach, we have realized on three numerical examples and have made a comparison with earlier studies existing in the literature calculating the error norms norms 𝐿2 𝑎𝑛𝑑 𝐿∞ .The solutions obtained in the article show that the present method is quite proper for using many partial differential equations in terms of being easy and conve-nient to computer application.

References

  • REFERENCES
  • [1] Qureshi S, Yusuf A, Aziz S. Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations. Phys Scr 2021;96:114002. [CrossRef]
  • [2] Memon Z, Qureshi S, Memon BR. Assessing the role of quarantine and isolation as control strategies faor COVID-19 outbreak: a case study. Chaos Solit Fractals 2021;144:110655. [CrossRef]
  • [3] Qureshi S, Yusuf A. Fractional derivatives applied to MSEIR problems: Comparative study with real world data. Eur Phys J Plus 2019;134:1−13. [CrossRef]
  • [4] Qureshi S, Fractal-fractional differentiation for the modeling and mathematical analysis of non- lin-ear diarrhea transmission dynamics under the use of real data. Chaos Solit Fractals 2020;136:109812.[CrossRef]
  • [5] Fisher RA. The wave of advance of advantageous genes. Ann Eugen 1936;7:355−369. [CrossRef]
  • [6] Kolmogorov A, Petrovskii I, Piskunov N. Study of a diffusion equation that ıs related to the growth of a quality of matter and ıts application to a biological problem. Moscow Univ Mathem Bull 1937;1:1−26.
  • [7] Canosa J. On a nonlinear diffusion equation describ-ing population growth. J Res Dev 1973;17:307−313.[CrossRef]
  • [8] Gazdag J, Canosa J. Numerical solution of Fisher's equation. J Appl Prob 1974;11:445−457. [CrossRef]
  • [9] Tang S, Weber RO. Numerical study of Fisher's equa-tion by a Petrov-Galerkin finite element method. J Austral Math Soc Ser B 1991;33:27−38. [CrossRef] [10] Qiu Y, Sloan DM. Numerical solution of Fisher's equation using a moving mesh method. J Comput Phys 1998;146:726−746. [CrossRef]
  • [11] Zhao S, Wei GW. Comparison of the discrete sin-gular convolution and three other numerical schemes for solving Fisher's equation. J Sci Comput 2003;25:127−147. [CrossRef]
  • [12] Cattani C, Kudreyko A. Mutiscale analysis of the fisher equation. Lect Notes Comput Sci 2008;5072: 1171−1180. [CrossRef]
  • [13] Mittal RC, Arora G. Efficient numerical solution of Fisher's equation by using B-spline method. Int. J Comput Math 2010;87:3039−3051. [CrossRef]
  • [14] Dagg II, Sahin A, Korkmaz A. Numerical investigation of the solution of Fisher's equation via the B- spline Galerkin method. Numer Methods Partial Differ Equ 2010;26:1483−1503. [CrossRef]
  • [15] Mittal RC, Jain R. Cubic B-splines collocation method for solving nonlinear parabolic partial dif-ferential equations with Neumann boundary con-ditions. commun Nonlinear sci. Numer.Simulat 2012;17:4616−4625. [CrossRef]
  • [16] Mittal RC, Jain RK. Numerical solutions of nonlinear Fisher's reaction-diffusion equation with mod-ified cubic B- spline collocation method. Math Sci 2013;7:1−10. [CrossRef]
  • [17] Sahin A, Dagg II, Saka B. A B-spline algorithm for the numerical solution of Fisher's equation. Kybernetes 2008;37:326−342. [CrossRef]
  • [18] Sahin A, Ozmen O. Usage of higher order B-splines in numerical solution of Fishers equation. Int J Nonlinear Sci 2014;17:241−253.
  • [19] Ersoy O, Dagg I.. The extended B-spline collocation method for numerical solutions of Fishers equation. AIP Conf Proc 2015;1648:370011. [CrossRef]
  • [20] Dag I, Ersoy O. The exponential cubic B-spline algorithm for Fisher equation. Chaos Solit Fractals 2016;86:101−106. [CrossRef]
  • [21] Rohila R, Mittal R.C. Numerical study of reac-tion diffusion Fisher's equation by fourth order cubic B-spline collocation method. Math Sci 2018;12:79−89. [CrossRef]
  • [22] Tamsir M, Srivastava VK, Dhiman N, Chauhan A. Numerical computation of nonlinear fisher's reac-tion-diffusion equation with exponential modified cubic b-spline differential quadrature method. Int. J Appl Comput Math 2018;4:1−13. [CrossRef]
  • [23] Dhiman N, Chauhan A, Tamsir M, Chauhan A. Numerical simulation of Fisher's type equation via a collocation technique based on re-defined quintic B-splines. Multidiscip Model Mater Struct 2020;16:1117−1130. [CrossRef]
  • [24] Kapoor M, Joshi V. Solution of non-linear Fisher's reaction-diffusion equation by using Hyperbolic B-spline based differential quadrature method. J Phys Conf Ser 2020;1531:012064. [CrossRef]
  • [25] Madzvamuse A. Time stepping schemes for moving grid finite elements applied to reaction- diffusion systems on fixed and growing domains. J Comput Phys 2006;214:239−263. [CrossRef]
  • [26] Hundsdorfer W, Verwer J. Numerical solution of time-dependent advection-diffusion- reaction equations . 1st ed. Berlin: Springer; 2003. [CrossRef]
  • [27] Seydaogglu M, Blanes S. High-order splitting meth-ods for separable non-autonomous parabolic equa-tions. Appl Numer Math 2014;84:22−32. [CrossRef]
  • [28] Strang G. On the construction and comparison of difference schemes. J Numer Anal 1968;5:506−517.[CrossRef]
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Melike Karta 0000-0003-3412-4370

Publication Date April 30, 2023
Submission Date November 21, 2021
Published in Issue Year 2023 Volume: 41 Issue: 2

Cite

Vancouver Karta M. Numerical approach of fisher’s equation with strang splitting technique using finite element galerkin method. SIGMA. 2023;41(2):344-55.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/