Research Article
BibTex RIS Cite
Year 2023, Volume: 41 Issue: 2, 385 - 395, 30.04.2023

Abstract

References

  • REFERENCES
  • [1] Iqbal A, Saeed A, Ul-Hamid A. A review featur-ing the fundamentals and advancements of poly-mer/CNT nanocomposite application in aerospace industry. Polym Bull 2020;78:539−557. [CrossRef]
  • [2] Liu Q, Zhao Y, Gao S, Yang X, Fan R, Zhi M, et al. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Compos Part A Appl Sci Manuf 2021;149:106539.[CrossRef]
  • [3] Rudawska A. The impact of the acidic environment on the mechanical properties of epoxy compounds in different conditions. Polymers 2020;12:2957. [CrossRef]
  • [4] Frigione M, Rodríguez-Prieto A. Can accelerated aging procedures predict the long term behavior of polymers exposed to different environments. Polymers 2021;13:2688. [CrossRef]
  • [5] Møller VB, Dam-Johansen K, Frankær SM, Kiil S. Acid-resistant organic coatings for the chem-ical industry: a review. J Coat Technol Res 2017;14:279−306. [CrossRef]
  • [6] Rudawska A, Brunella V. The effect of ageing in water solution containing iron sulfate on the mechanical properties of epoxy adhesives. Polymers 2020;12:218. [CrossRef]
  • [7] Chen H, Jacobs O, Wu W, Rüdiger G, Schädel B. Effect of dispersion method on tribological proper-ties of carbon nanotube reinforced epoxy resin com-posites. Polym Test 2007;26:351−360. [CrossRef]
  • [8] Ng CB, Schadler LS, Siegel RW. Synthesis and mechanical properties of TiO2-epoxy nanocompos-ites. Nanostructured Mater 1999;12:507−510. [CrossRef]
  • [9] Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear 2004;256:1072−1081. [CrossRef]
  • [10] Jacobs O, Xu W, Schädel B, Wu W. Wear behaviour of carbon nanotube reinforced epoxy resin compos-ites. Tribol Lett 2006;23:65−75. [CrossRef]
  • [11] Sukur EF, Onal G. Graphene nanoplatelet mod-ified basalt/epoxy multi-scale composites with improved tribological performance. Wear 2020;460-461:203481. [CrossRef]
  • [12] Sukur EF, Kocaman S, Onal G. Mechanical, tribo-logical and thermal properties of epoxy based phe-nolic nanocomposites reinforced with graphene nanoplatelet. Trans Mech Eng 2020;6:21−27.
  • [13] Sukur EF. Dry sliding friction and wear properties of CaCO3 nanoparticle filled epoxy/carbon fiber composites. Nigde Omer Halisdemir Univ J Eng Sci 2020;9:1108−1117. [CrossRef]
  • [14] Eskizeybek V, Ulus H, Kaybal HB, Sahin OS, Avcı A. Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocom-posites. Compos Part B Eng 2018;140:223−231. [CrossRef
  • [15] Kaybal HB. An experimental study on interlami-nar shear strength and fracture toughness: Carbon fiber reinforced epoxy composites enhanced with the CaCO3 nanoparticles. Nigde Omer Halisdemir Univ J Eng Sci 2021;10:777−783.
  • [16] Ulus H. The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: perfor-mance evaluating by dynamic mechanical analysis (DMA) and short beam shear (SBS) tests. Nigde Omer Halisdemir Univ J Eng Sci 2021;10:412−419.
  • [17] Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplate-lets for epoxy composites with improved thermal properties. Polymer 2012;53:471−480. [CrossRef]
  • [18] Zhou W, Zuo J, Zhang X, Zhou A. Thermal, electri-cal, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites: J Compos Mater 2013;48:2517−2526. [CrossRef]
  • [19] Lee D, Song SH, Hwang J, Jin SH, Park KH, Kim BH, et al. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 2013;9:2602−2610. [CrossRef]
  • [20] Ulus H, Ustun T, Eskizeybek V, Sahin OS, Avci A, Ekrem M. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical prop-erties. Appl Surf Sci 2014;318:37−42. [CrossRef]
  • [21] Kaybal HB, Ulus H, Demir O, Caner Tatar A, Avcı A. Investigations on the mechanical properties of the nano SiO2 epoxy nanocomposite. Appl Eng Lett 2017;2:2466−4847.
  • [22] Ekrem M, Düzcükoglu H, Ali Senyurt M, Sahin OS, Avci A. Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets. J Tribol 2018;140:022001. [CrossRef]
  • [23] Düzcükoglu H, Ekinci Ş, Sahin OS, Avci A, Ekrem M, Unaldi M. Enhancement of wear and friction characteristics of epoxy resin by multiwalled carbon nanotube and boron nitride nanoparticles. Tribol Trans 2015;58:635−642. [CrossRef]
  • [24] Sukur EF, Onal G. Long-term salt-water durabil-ity of GNPs reinforced basalt-epoxy multiscale composites for marine applications. Tribol Int 2021;158:106910. [CrossRef]
  • [25] Gülsan ME, Mohammedameen A, Sahmaran M, Nis A, Alzeebaree R, Çevik A. Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics. Adv Concr Constr 2018;6:199−220.
  • [26] Ji Y, Kim YJ. Effects of sulfuric acid on durability characteristics of CFRP composite sheets. J Mater Civ Eng 2017;29:04017159. [CrossRef]
  • [27] Ulus H, Kaybal HB, Eskizeybek V, Avcı A. Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites. J Compos Mater 2020;54:2761−2779.[CrossRef]
  • [28] Kaybal HB, Unuvar A, Kaynak Y, Avcı A. Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materi-als. J Compos Mater 2020;54:215−227. [CrossRef]
  • [29] Ji Y, Kim YJ. Effects of sulfuric acid on durability characteristics of CFRP composite sheets. J Mater Civ Eng 2017;29:04017159. [CrossRef]
  • [30] Hassan KT. Study the effect of some solutions on epoxy resin & calculate diffusion coefficient of solu-tion. J Univ Anbar Pure Sci 2010;4. [CrossRef]
  • [31] Amaro AM, Reis PNB, Neto MA, Louro C. Effect of different acid solutions on glass/epoxy composites. J Reinf Plast Compos 2013;32:1018−1029. [CrossRef]
  • [32] Padarthi Y, Mohanta S, Gupta J, Neogi S. Assessment of transport kinetics and chemo-mechanical prop-erties of GF/Epoxy composite under long term exposure to sulphuric acid. Polym Degrad Stab 2021;183:109436. [CrossRef]
  • [33] Navaneethakrishnan G, Karthikeyan T, Saravanan S, Selvam V. Influence of boron nitride on morpho-logical, mechanical, thermal and wear character-istics of epoxy nanocomposites. Mater Res Innov 2020;24:257−262. [CrossRef]
  • [34] Bian W, Yao T, Chen M, Zhang C, Shao T, Yang Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol 2018;168:420−428. [CrossRef]
  • [35] Cui M, Ren S, Qin S, Xue Q, Zhao H, Advances LW-R, et al. Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings. RSC Adv 2017;7:44043−44053. [CrossRef]
  • [36] Chen B, Bi Q, Yang J, Xia Y, International JH-T. Tribological properties of solid lubricants (graph-ite, h-BN) for Cu-based P/M friction composites. Tribol Int 2008;41:1145−1152. [CrossRef]
  • [37] Uygunoglu T, Brostow W, Gunes I. Wear and fric-tion of composites of an epoxy with boron contain-ing wastes. Polímeros 2015;25:271−276. [CrossRef]

Tribological behavior of epoxy nanocomposites under corrosive environment: effect of high-performance boron nitride nanoplatelet

Year 2023, Volume: 41 Issue: 2, 385 - 395, 30.04.2023

Abstract

This paper sheds light on the impact of corrosive service conditions on the mechanical and tribological performances of epoxy nanocomposites containing 0.5 wt.% hexagonal boron ni-tride (BN) nanoplatelets as fillers. The composite samples were aged in 10 wt% H2SO4 solu-tions by immersion for 504 hours. Variation in mechanical and tribological behaviors during immersion was investigated using tensile and ball-on disk tests. The ball-on disk tests were performed at room temperature under a 10 N constant load and 0.8 m/s speed for 3000 sec-onds. The high-performance BN nanoplatelets improved neat Epoxy’s tensile strength, tough-ness, and wear performance by 17%, 27%, and 56%, respectively. The aging results revealed that H2SO4 exposure deteriorates the mechanical performance of all epoxy composite samples, even though BN/Epoxy nanocomposites exhibited better resistance to the corrosive environ-ment. In contrast, the tribological performance increased with the acidic solution exposure that acts as a lubricant and forms a corrosive protective layer after the immersion of 504 hours

References

  • REFERENCES
  • [1] Iqbal A, Saeed A, Ul-Hamid A. A review featur-ing the fundamentals and advancements of poly-mer/CNT nanocomposite application in aerospace industry. Polym Bull 2020;78:539−557. [CrossRef]
  • [2] Liu Q, Zhao Y, Gao S, Yang X, Fan R, Zhi M, et al. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Compos Part A Appl Sci Manuf 2021;149:106539.[CrossRef]
  • [3] Rudawska A. The impact of the acidic environment on the mechanical properties of epoxy compounds in different conditions. Polymers 2020;12:2957. [CrossRef]
  • [4] Frigione M, Rodríguez-Prieto A. Can accelerated aging procedures predict the long term behavior of polymers exposed to different environments. Polymers 2021;13:2688. [CrossRef]
  • [5] Møller VB, Dam-Johansen K, Frankær SM, Kiil S. Acid-resistant organic coatings for the chem-ical industry: a review. J Coat Technol Res 2017;14:279−306. [CrossRef]
  • [6] Rudawska A, Brunella V. The effect of ageing in water solution containing iron sulfate on the mechanical properties of epoxy adhesives. Polymers 2020;12:218. [CrossRef]
  • [7] Chen H, Jacobs O, Wu W, Rüdiger G, Schädel B. Effect of dispersion method on tribological proper-ties of carbon nanotube reinforced epoxy resin com-posites. Polym Test 2007;26:351−360. [CrossRef]
  • [8] Ng CB, Schadler LS, Siegel RW. Synthesis and mechanical properties of TiO2-epoxy nanocompos-ites. Nanostructured Mater 1999;12:507−510. [CrossRef]
  • [9] Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear 2004;256:1072−1081. [CrossRef]
  • [10] Jacobs O, Xu W, Schädel B, Wu W. Wear behaviour of carbon nanotube reinforced epoxy resin compos-ites. Tribol Lett 2006;23:65−75. [CrossRef]
  • [11] Sukur EF, Onal G. Graphene nanoplatelet mod-ified basalt/epoxy multi-scale composites with improved tribological performance. Wear 2020;460-461:203481. [CrossRef]
  • [12] Sukur EF, Kocaman S, Onal G. Mechanical, tribo-logical and thermal properties of epoxy based phe-nolic nanocomposites reinforced with graphene nanoplatelet. Trans Mech Eng 2020;6:21−27.
  • [13] Sukur EF. Dry sliding friction and wear properties of CaCO3 nanoparticle filled epoxy/carbon fiber composites. Nigde Omer Halisdemir Univ J Eng Sci 2020;9:1108−1117. [CrossRef]
  • [14] Eskizeybek V, Ulus H, Kaybal HB, Sahin OS, Avcı A. Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocom-posites. Compos Part B Eng 2018;140:223−231. [CrossRef
  • [15] Kaybal HB. An experimental study on interlami-nar shear strength and fracture toughness: Carbon fiber reinforced epoxy composites enhanced with the CaCO3 nanoparticles. Nigde Omer Halisdemir Univ J Eng Sci 2021;10:777−783.
  • [16] Ulus H. The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: perfor-mance evaluating by dynamic mechanical analysis (DMA) and short beam shear (SBS) tests. Nigde Omer Halisdemir Univ J Eng Sci 2021;10:412−419.
  • [17] Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplate-lets for epoxy composites with improved thermal properties. Polymer 2012;53:471−480. [CrossRef]
  • [18] Zhou W, Zuo J, Zhang X, Zhou A. Thermal, electri-cal, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites: J Compos Mater 2013;48:2517−2526. [CrossRef]
  • [19] Lee D, Song SH, Hwang J, Jin SH, Park KH, Kim BH, et al. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 2013;9:2602−2610. [CrossRef]
  • [20] Ulus H, Ustun T, Eskizeybek V, Sahin OS, Avci A, Ekrem M. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical prop-erties. Appl Surf Sci 2014;318:37−42. [CrossRef]
  • [21] Kaybal HB, Ulus H, Demir O, Caner Tatar A, Avcı A. Investigations on the mechanical properties of the nano SiO2 epoxy nanocomposite. Appl Eng Lett 2017;2:2466−4847.
  • [22] Ekrem M, Düzcükoglu H, Ali Senyurt M, Sahin OS, Avci A. Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets. J Tribol 2018;140:022001. [CrossRef]
  • [23] Düzcükoglu H, Ekinci Ş, Sahin OS, Avci A, Ekrem M, Unaldi M. Enhancement of wear and friction characteristics of epoxy resin by multiwalled carbon nanotube and boron nitride nanoparticles. Tribol Trans 2015;58:635−642. [CrossRef]
  • [24] Sukur EF, Onal G. Long-term salt-water durabil-ity of GNPs reinforced basalt-epoxy multiscale composites for marine applications. Tribol Int 2021;158:106910. [CrossRef]
  • [25] Gülsan ME, Mohammedameen A, Sahmaran M, Nis A, Alzeebaree R, Çevik A. Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics. Adv Concr Constr 2018;6:199−220.
  • [26] Ji Y, Kim YJ. Effects of sulfuric acid on durability characteristics of CFRP composite sheets. J Mater Civ Eng 2017;29:04017159. [CrossRef]
  • [27] Ulus H, Kaybal HB, Eskizeybek V, Avcı A. Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites. J Compos Mater 2020;54:2761−2779.[CrossRef]
  • [28] Kaybal HB, Unuvar A, Kaynak Y, Avcı A. Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materi-als. J Compos Mater 2020;54:215−227. [CrossRef]
  • [29] Ji Y, Kim YJ. Effects of sulfuric acid on durability characteristics of CFRP composite sheets. J Mater Civ Eng 2017;29:04017159. [CrossRef]
  • [30] Hassan KT. Study the effect of some solutions on epoxy resin & calculate diffusion coefficient of solu-tion. J Univ Anbar Pure Sci 2010;4. [CrossRef]
  • [31] Amaro AM, Reis PNB, Neto MA, Louro C. Effect of different acid solutions on glass/epoxy composites. J Reinf Plast Compos 2013;32:1018−1029. [CrossRef]
  • [32] Padarthi Y, Mohanta S, Gupta J, Neogi S. Assessment of transport kinetics and chemo-mechanical prop-erties of GF/Epoxy composite under long term exposure to sulphuric acid. Polym Degrad Stab 2021;183:109436. [CrossRef]
  • [33] Navaneethakrishnan G, Karthikeyan T, Saravanan S, Selvam V. Influence of boron nitride on morpho-logical, mechanical, thermal and wear character-istics of epoxy nanocomposites. Mater Res Innov 2020;24:257−262. [CrossRef]
  • [34] Bian W, Yao T, Chen M, Zhang C, Shao T, Yang Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol 2018;168:420−428. [CrossRef]
  • [35] Cui M, Ren S, Qin S, Xue Q, Zhao H, Advances LW-R, et al. Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings. RSC Adv 2017;7:44043−44053. [CrossRef]
  • [36] Chen B, Bi Q, Yang J, Xia Y, International JH-T. Tribological properties of solid lubricants (graph-ite, h-BN) for Cu-based P/M friction composites. Tribol Int 2008;41:1145−1152. [CrossRef]
  • [37] Uygunoglu T, Brostow W, Gunes I. Wear and fric-tion of composites of an epoxy with boron contain-ing wastes. Polímeros 2015;25:271−276. [CrossRef]
There are 38 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Emine Feyza Şükür 0000-0003-2644-880X

Halil Burak Kaybal 0000-0002-2312-7106

Hasan Ulus 0000-0001-8591-8993

Ahmet Avcı 0000-0002-3105-7849

Publication Date April 30, 2023
Submission Date October 21, 2021
Published in Issue Year 2023 Volume: 41 Issue: 2

Cite

Vancouver Şükür EF, Kaybal HB, Ulus H, Avcı A. Tribological behavior of epoxy nanocomposites under corrosive environment: effect of high-performance boron nitride nanoplatelet. SIGMA. 2023;41(2):385-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/