Research Article
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 5, 1439 - 1447, 04.10.2024

Abstract

References

  • REFERENCES
  • [1] Sims CC. Graphs and finite permutation groups. Math. Z 1967;95:7686. [CrossRef]
  • [2] Jones GA, Singerman D, Wicks K. The modular group and generalized Farey graphs. London Math Soc Lecture Note Ser 1991;160:316338. [CrossRef]
  • [3] Akbas M. On suborbital graphs for modular group. Bull Lond Math Soc 2001;33:647652. [CrossRef]
  • [4] Deger AH, Besenk M, Guler BO, On suborbital graphs and related continued fractions. Appl. Math. Comput 2011;218:746750. [CrossRef]
  • [5] Deger AH, Relationships with the Fibonacci numbers and the special vertices of the suborbital graphs. GUJS 2017;7:168180.
  • [6] Deger AH, Vertices of paths of minimal lengths on suborbital graphs. Filomat 2017;31:913923. [CrossRef]
  • [7] Woschni EG, The importance of estimation and approximation methods in system theory. Cybern Syst 1992;23:335343. [CrossRef]
  • [8] Koshy T, Fibonacci and Lucas Numbers with Applications. New York: Wiley-Interscience Publication; 2001. [CrossRef]
  • [9] Ratcliffe JG. Foundations of Hyperbolic Manifolds. New York: Springer-Verlag; 1994. [CrossRef]
  • [10] Schoeneberg B. Elliptic Modular Functions. New York: Springer-Verlag; 1974. [CrossRef]
  • [11] Anderson JW. Hyperbolic Geometry. Southampton: Springer; 2005.
  • [12] Diestel R. Graph Theory. New York: Springer-Verlag Heidelberg; 2005. [CrossRef]
  • [13] Ruohonen K. Graph Theory. Tampere, Finland: Tampere University of Technology; 2008.
  • [14] Neumann PM, Finite Permutation Groups, Edge Coloured Graphs and Matrices, Topics in Group Theory and Computation. Curran M.P.J. (eds.) London: Academic Press; 1977.
  • [15] Tsukuzu T. Finite Groups and Finite Geometries. Cambridge: Cambridge University Press; 1982.
  • [16] Akbaba U, Deger AH, Relation between matrices and the suborbital graphs by the special number sequences. Turkish J Math 2022;46:753767. [CrossRef]
  • [17] Kişi Ö, Debnath P, Fibonacci ideal convergence on intuitionistic fuzzy normed linear spaces. Fuzzy Inform Eng 2022;14:255268. [CrossRef]
  • [18] Kişi Ö, Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces. Math Sci Appl E-Notes 2022;10:114124. [CrossRef]

Some approximations and identities from special sequences for the vertices of suborbital graphs

Year 2024, Volume: 42 Issue: 5, 1439 - 1447, 04.10.2024

Abstract

In this study, we investigate the vertices arising from the action of a suborbital graph, in terms of continued fractions, matrix, and recurrence relations. Using the approximation of Fibo-nacci sequence by the Binet formula, we demonstrate that the vertices of the suborbital graph are related to Lucas numbers. Then, we provide new identities and approximations regarding Fibonacci, Lucas, Pell, and Pell-Lucas numbers.

References

  • REFERENCES
  • [1] Sims CC. Graphs and finite permutation groups. Math. Z 1967;95:7686. [CrossRef]
  • [2] Jones GA, Singerman D, Wicks K. The modular group and generalized Farey graphs. London Math Soc Lecture Note Ser 1991;160:316338. [CrossRef]
  • [3] Akbas M. On suborbital graphs for modular group. Bull Lond Math Soc 2001;33:647652. [CrossRef]
  • [4] Deger AH, Besenk M, Guler BO, On suborbital graphs and related continued fractions. Appl. Math. Comput 2011;218:746750. [CrossRef]
  • [5] Deger AH, Relationships with the Fibonacci numbers and the special vertices of the suborbital graphs. GUJS 2017;7:168180.
  • [6] Deger AH, Vertices of paths of minimal lengths on suborbital graphs. Filomat 2017;31:913923. [CrossRef]
  • [7] Woschni EG, The importance of estimation and approximation methods in system theory. Cybern Syst 1992;23:335343. [CrossRef]
  • [8] Koshy T, Fibonacci and Lucas Numbers with Applications. New York: Wiley-Interscience Publication; 2001. [CrossRef]
  • [9] Ratcliffe JG. Foundations of Hyperbolic Manifolds. New York: Springer-Verlag; 1994. [CrossRef]
  • [10] Schoeneberg B. Elliptic Modular Functions. New York: Springer-Verlag; 1974. [CrossRef]
  • [11] Anderson JW. Hyperbolic Geometry. Southampton: Springer; 2005.
  • [12] Diestel R. Graph Theory. New York: Springer-Verlag Heidelberg; 2005. [CrossRef]
  • [13] Ruohonen K. Graph Theory. Tampere, Finland: Tampere University of Technology; 2008.
  • [14] Neumann PM, Finite Permutation Groups, Edge Coloured Graphs and Matrices, Topics in Group Theory and Computation. Curran M.P.J. (eds.) London: Academic Press; 1977.
  • [15] Tsukuzu T. Finite Groups and Finite Geometries. Cambridge: Cambridge University Press; 1982.
  • [16] Akbaba U, Deger AH, Relation between matrices and the suborbital graphs by the special number sequences. Turkish J Math 2022;46:753767. [CrossRef]
  • [17] Kişi Ö, Debnath P, Fibonacci ideal convergence on intuitionistic fuzzy normed linear spaces. Fuzzy Inform Eng 2022;14:255268. [CrossRef]
  • [18] Kişi Ö, Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces. Math Sci Appl E-Notes 2022;10:114124. [CrossRef]
There are 19 citations in total.

Details

Primary Language English
Subjects Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

İbrahim Gökcan 0000-0002-6933-8494

Ali Hikmet Değer 0000-0003-0764-715X

Ümmügülsün Çağlayan This is me 0000-0002-5870-6802

Publication Date October 4, 2024
Submission Date May 23, 2023
Published in Issue Year 2024 Volume: 42 Issue: 5

Cite

Vancouver Gökcan İ, Değer AH, Çağlayan Ü. Some approximations and identities from special sequences for the vertices of suborbital graphs. SIGMA. 2024;42(5):1439-47.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/