[22] Miller HI. A measure theoretical subsequence characterization of statistical convergence. Trans Am Math Soc 1995;347:18111819. [CrossRef]
[23] Fridy JA. On statistical convergence. Colloq Math 1951;2:241244. [CrossRef]
[24] Gümüş H. Lacunary weak statistical convergence. Gen Math Notes 2015;28:5058.
[25] Gümüş H. A new approach to the concept of statistical convergence with the number of alpha. Commun Fac Sci Univ Ank Ser A1 2018;67:3745. [CrossRef]
[26] Kişi Ö. On lacunary arithmetic statistical convergence. J Appl Math Inform 2022;40:327339.
[27] Savaş E, Gürdal M. Statistical convergence in probabilistic normed spaces. UPB Sci Bull Ser A 2015;77:195204.
[28] Fridy JA, Orhan C. Lacunary statistical convergence. Pac J Math. 1993;160:4351. [CrossRef]
[29] Debnath S, Debnath A. Statistical convergence of multisequences on R. Appl Sci 2021;23:1728.
[30] Kostyrko P, Šalát T, Wileynski W. Convergence. Real Anal Exch 2000;26:669680. [CrossRef]
[31] Savaş E, Das P. A generalized statistical convergence via ideals. Appl Math Lett 2011;24:826830. [CrossRef]
[32] Das P, Savaş E. On statistical and lacunary statistical convergence of order. Bull Irani Math Soc. 2014;40:459472. [CrossRef]
[33] Das P, Savaş E, Ghosal S. On generalized summability methods using ideals. Appl Math Lett 2011;36:15091513. [CrossRef]
[34] Demir N, Gümüş H. Ideal convergence of multiset sequences. Filomat 2023;37:1019910207. [CrossRef]
A study on I-lacunary statistical convergence of multiset sequences
Year 2024,
Volume: 42 Issue: 5, 1575 - 1580, 04.10.2024
In classical set theory, elements of the set are written once but the sets in which the same item is repeated several times in daily life are in all areas of our lives. These sets are called multi-sets and are studied in many fields such as Mathematics, Physics, Chemistry, and Computer Sciences. Sequences consisting of elements of these sets are called multiset sequences. In this paper, we study the concept of I-lacunary statistical convergence of multiset sequences and investigate some important results.
[22] Miller HI. A measure theoretical subsequence characterization of statistical convergence. Trans Am Math Soc 1995;347:18111819. [CrossRef]
[23] Fridy JA. On statistical convergence. Colloq Math 1951;2:241244. [CrossRef]
[24] Gümüş H. Lacunary weak statistical convergence. Gen Math Notes 2015;28:5058.
[25] Gümüş H. A new approach to the concept of statistical convergence with the number of alpha. Commun Fac Sci Univ Ank Ser A1 2018;67:3745. [CrossRef]
[26] Kişi Ö. On lacunary arithmetic statistical convergence. J Appl Math Inform 2022;40:327339.
[27] Savaş E, Gürdal M. Statistical convergence in probabilistic normed spaces. UPB Sci Bull Ser A 2015;77:195204.
[28] Fridy JA, Orhan C. Lacunary statistical convergence. Pac J Math. 1993;160:4351. [CrossRef]
[29] Debnath S, Debnath A. Statistical convergence of multisequences on R. Appl Sci 2021;23:1728.
[30] Kostyrko P, Šalát T, Wileynski W. Convergence. Real Anal Exch 2000;26:669680. [CrossRef]
[31] Savaş E, Das P. A generalized statistical convergence via ideals. Appl Math Lett 2011;24:826830. [CrossRef]
[32] Das P, Savaş E. On statistical and lacunary statistical convergence of order. Bull Irani Math Soc. 2014;40:459472. [CrossRef]
[33] Das P, Savaş E, Ghosal S. On generalized summability methods using ideals. Appl Math Lett 2011;36:15091513. [CrossRef]
[34] Demir N, Gümüş H. Ideal convergence of multiset sequences. Filomat 2023;37:1019910207. [CrossRef]