Research Article
BibTex RIS Cite
Year 2025, Volume: 43 Issue: 1, 160 - 167, 28.02.2025

Abstract

References

  • REFERENCES
  • [1] Cottle RW, Pang JS, Stone RE. The linear complementarity problem. Acad. Press, New York, 1992.
  • [2] Hansen T, Manne AS. Equilibrium and linear complementarity-an economy with institutional constraints on prices. In Equilibrium and Disequilibrium in Economic Theory: Proceedings of a Conference Organized by the Institute for Advanced Studies, Vienna, Austria, Dordrecht: Springer Netherlands 1978;227–237.
  • [3] Eijndhoven JTJV. Solving the linear complementarity problem in circuit simulation. SIAM J Control Optim 1986;24:1050–1062.
  • [4] Murty KG. Linear Complementarity, Linear and Nonlinear Programming. Internet edition, 1997.
  • [5] Wu SL, Li CX. A class of new modulus-based matrix splitting methods for linear complementarity problem. Optim Lett 2022;1–17.
  • [6] Zheng H, Li W, Vong S. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer Algorithms 2017;74:137–152.
  • [7] TΓΌtΓΌncΓΌ RH, Todd MJ. Reducing horizontal linear complementarity problems. Linear Algebra Appl 1995;223:717–729.
  • [8] Fujisawa T, Kuh ES. Piecewise-linear theory of nonlinear networks. SIAM J Appl Math 1972;22:307–328.
  • [9] Mezzadri F, Galligani E. On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication. Math Comput Simul 2020;176:226–242.
  • [10] Achache M, Hazzam N. Solving absolute value equations via complementarity and interior-point methods. J Nonl Funct Anal 2018;1–10.
  • [11] Li CX, Wu SL. A note on the unique solution of linear complementarity problem. Cogent Mathematics 2016;3:1271268.
  • [12] Schafer U. A linear complementarity problem with a P-matrix. SIAM Rev 2004;46:189–201.
  • [13] Sznajder R, Gowda MS. Generalizations of P0- and P-properties; Extended vertical and horizontal linear complementarity problems. Linear Algebra Appl 1995;223:695–715.
  • [14] Achache M, Anane N. On unique solvability and Picard's iterative method for absolute value equations. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science 2021;13–26. [ 15] Mezzadri F, Galligani E. Splitting methods for a class of horizontal linear complementarity problems. J Optim Theory Appl 2019;180:500–517.
  • [16] Mezzadri F, Galligani E. A modulus-based nonsmooth Newton's method for solving horizontal linear complementarity problems. Optim Lett 2021;15:1785–1798.
  • [17] Gao X, Wang J. Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int J Comput Intell Syst 2014:7:724–732.
  • [18] Ralph D. A stable homotopy approach to horizontal linear complementarity problems. Control Cybern 2002;31:575–600.
  • [19] Zhang Y. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J Optim 1994;4:208–227.
  • [20] Mangasarian OL, Meyer RR. Absolute value equations. Linear Algebra Appl 2006;419:359–367.
  • [21] Mangasarian OL. Absolute value programming. Comput Optim Appl 2007;36:43–53.
  • [22] Kumar S, Deepmala. On unique solvability of the piecewise linear equation system. J Numer Anal Approx Theory 2022;51:181–188.
  • [23] Radons M. Direct solution of piecewise linear systems. Theor Comput Sci 2016;626:97–109.
  • [24] Radons M, Rump SM. Convergence results for some piecewise linear solvers. Optim Lett 2022;16:1663–1673.
  • [25] Rohn J. A theorem of the alternatives for the equation Ax+ B|x|= b. Linear Multilinear Algebra 2004;52:421–426.
  • [26] Mangasarian OL. Linear complementarity as absolute value equation solution. Optim Lett 2013;8:1529–1534.
  • [27] Migot T, Abdallah L, Haddou M. Solving absolute value equation using complementarity and smoothing functions. J Comput Appl Math 2018;327:196–207.
  • [28] Kumar S, Deepmala, Hladik M, Moosaei H. Characterization of Unique Solvability of Absolute Value Equations: An Overview, Extensions, and Future Directions. Optim Lett 2024;1–19.
  • [29] HladΓ­k M. Bounds for the solutions of absolute value equations. Comput Optim Appl 2018;69:243–266.
  • [30] HladΓ­k M. Properties of the solution set of absolute value equations and the related matrix classes. SIAM J Matrix Anal Appl 2023;44:175–195.
  • [31] Esmaeili H, Mirzapour M, Mahmoodabadi E. A fast convergent two-step iterative method to solve the absolute value equation. UPB Sci Bull Ser A 2016:78:25–32.
  • [32] Mangasarian OL. A generalized Newton method for absolute value equations. Optim Lett 2009;3:101–108.
  • [33] Noor MA, Iqbal J, Noor KI, Al-Said E. On an iterative method for solving absolute value equations. Optim Lett 2012;6:1027–1033. [34] Rohn J, Hooshyarbakhsh V, Farhadsefat R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim Lett 2014;8:35–44.
  • [35] Kumar S, Deepmala. The unique solvability conditions for a new class of absolute value equation. Yugosl J Oper Res 2023;33:425–434.
  • [36] Mangasarian OL. Absolute value equation solution via concave minimization. Optim Lett 2007;1:3–8.
  • [37] Mangasarian OL. Sufficient conditions for the unsolvability and solvability of the absolute value equation. Optim Lett 2017;11:1–7.
  • [38] Rohn J. On unique solvability of the absolute value equation. Optim Lett 2009;3:603–606.
  • [39] Wu SL, Guo P. On the unique solvability of the absolute value equation. J Optim Theory Appl 2016;169:705–712.
  • [40] Wu SL, Li CX. The unique solution of the absolute value equations. Appl Math Lett 2018;76:195–200.
  • [41] Ghafouri A, Esmaily R, Alizadeh A. Numerical simulation of tank-treading and tumbling motion of red blood cell in the poiseuille flow in a microchannel with and without obstacle. Iran J Sci Technol Trans Mech Eng 2019;43:627–638.
  • [42] Islam MS. Lyapunov exponents of one dimensional chaotic dynamical systems via a general piecewise spline maximum entropy method. Fundam. J Math Appl 2019;2:130–138.
  • [43] Kumar S, Deepmala. Sufficient conditions for the unique solvability of absolute value matrix equations. arXiv preprint arXiv:2305.04495, 2023.
  • [44] Kumar S, Deepmala. A note on unique solvability of the generalized absolute value matrix equation. Natl Acad Sci Lett 2023;46:129–131.
  • [45] Kumar S, Deepmala. A note on the unique solvability condition for generalized absolute value matrix equation. J Numer Anal Approx Theory 2022;51:83–87.
  • [46] Tekin I, Cetin MA. Identification of the solely time-dependent zero-order coefficient in a linear bi-flux diffusion equation from an integral measurement. Fundam J Math Appl 2023;6:170–176.
  • [47] Wu SL, Li CX. A note on unique solvability of the absolute value equation. Optim Lett 2019;14:1957–1960.
  • [48] Wu SL, Shen S. On the unique solution of the generalized absolute value equation. Optim Lett 2021;15:2017–2024.
  • [49] Wu SL. The unique solution of a class of the new generalized absolute value equation. Appl Math Lett 2021;116;107029.
  • [50] Zhou H, Wu SL. On the unique solution of a class of absolute value equations Ax- B|Cx|= d. AIMS Mathematics 2021;6:8912–8919.

On unique solvability of linear complementarity problems, horizontal linear complementarity problems and an n-absolute value equations

Year 2025, Volume: 43 Issue: 1, 160 - 167, 28.02.2025

Abstract

The complementarity problems is getting a lot of attention because it is connected to real-world problems in scientific computing and engineering. It shows up in various situations like linear and quadratic programming, two person games, circuit simulation, optimal stopping in Markov chains, contact problems with friction, finding a Nash-equilibrium in bimatrix games. The linear complementarity problems (LCP) and absolute value equations (AVE) have an equivalence relation; that is, the AVE can be transformed into an LCP and vice versa. The relationship between LCP and AVE enables the conversion of one problem into another, offering different perspectives for analysis and solution. This equivalence aids in theoretical understanding and the development of numerical methods applicable to both mathematical formulations. In the present study, we discuss the unique solvability of the LCP and the horizontal linear complementarity problems (HLCP). Some superior unique solvability conditions are obtained for LCP and HLCP. The unique solvability of the n-absolute value equations 𝐴𝑛π‘₯βˆ’π΅π‘›|π‘₯| = 𝑏 is also discussed. Some examples are highlighted for improving the current conditions of unique solutions for absolute value equations.

References

  • REFERENCES
  • [1] Cottle RW, Pang JS, Stone RE. The linear complementarity problem. Acad. Press, New York, 1992.
  • [2] Hansen T, Manne AS. Equilibrium and linear complementarity-an economy with institutional constraints on prices. In Equilibrium and Disequilibrium in Economic Theory: Proceedings of a Conference Organized by the Institute for Advanced Studies, Vienna, Austria, Dordrecht: Springer Netherlands 1978;227–237.
  • [3] Eijndhoven JTJV. Solving the linear complementarity problem in circuit simulation. SIAM J Control Optim 1986;24:1050–1062.
  • [4] Murty KG. Linear Complementarity, Linear and Nonlinear Programming. Internet edition, 1997.
  • [5] Wu SL, Li CX. A class of new modulus-based matrix splitting methods for linear complementarity problem. Optim Lett 2022;1–17.
  • [6] Zheng H, Li W, Vong S. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer Algorithms 2017;74:137–152.
  • [7] TΓΌtΓΌncΓΌ RH, Todd MJ. Reducing horizontal linear complementarity problems. Linear Algebra Appl 1995;223:717–729.
  • [8] Fujisawa T, Kuh ES. Piecewise-linear theory of nonlinear networks. SIAM J Appl Math 1972;22:307–328.
  • [9] Mezzadri F, Galligani E. On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication. Math Comput Simul 2020;176:226–242.
  • [10] Achache M, Hazzam N. Solving absolute value equations via complementarity and interior-point methods. J Nonl Funct Anal 2018;1–10.
  • [11] Li CX, Wu SL. A note on the unique solution of linear complementarity problem. Cogent Mathematics 2016;3:1271268.
  • [12] Schafer U. A linear complementarity problem with a P-matrix. SIAM Rev 2004;46:189–201.
  • [13] Sznajder R, Gowda MS. Generalizations of P0- and P-properties; Extended vertical and horizontal linear complementarity problems. Linear Algebra Appl 1995;223:695–715.
  • [14] Achache M, Anane N. On unique solvability and Picard's iterative method for absolute value equations. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science 2021;13–26. [ 15] Mezzadri F, Galligani E. Splitting methods for a class of horizontal linear complementarity problems. J Optim Theory Appl 2019;180:500–517.
  • [16] Mezzadri F, Galligani E. A modulus-based nonsmooth Newton's method for solving horizontal linear complementarity problems. Optim Lett 2021;15:1785–1798.
  • [17] Gao X, Wang J. Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int J Comput Intell Syst 2014:7:724–732.
  • [18] Ralph D. A stable homotopy approach to horizontal linear complementarity problems. Control Cybern 2002;31:575–600.
  • [19] Zhang Y. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J Optim 1994;4:208–227.
  • [20] Mangasarian OL, Meyer RR. Absolute value equations. Linear Algebra Appl 2006;419:359–367.
  • [21] Mangasarian OL. Absolute value programming. Comput Optim Appl 2007;36:43–53.
  • [22] Kumar S, Deepmala. On unique solvability of the piecewise linear equation system. J Numer Anal Approx Theory 2022;51:181–188.
  • [23] Radons M. Direct solution of piecewise linear systems. Theor Comput Sci 2016;626:97–109.
  • [24] Radons M, Rump SM. Convergence results for some piecewise linear solvers. Optim Lett 2022;16:1663–1673.
  • [25] Rohn J. A theorem of the alternatives for the equation Ax+ B|x|= b. Linear Multilinear Algebra 2004;52:421–426.
  • [26] Mangasarian OL. Linear complementarity as absolute value equation solution. Optim Lett 2013;8:1529–1534.
  • [27] Migot T, Abdallah L, Haddou M. Solving absolute value equation using complementarity and smoothing functions. J Comput Appl Math 2018;327:196–207.
  • [28] Kumar S, Deepmala, Hladik M, Moosaei H. Characterization of Unique Solvability of Absolute Value Equations: An Overview, Extensions, and Future Directions. Optim Lett 2024;1–19.
  • [29] HladΓ­k M. Bounds for the solutions of absolute value equations. Comput Optim Appl 2018;69:243–266.
  • [30] HladΓ­k M. Properties of the solution set of absolute value equations and the related matrix classes. SIAM J Matrix Anal Appl 2023;44:175–195.
  • [31] Esmaeili H, Mirzapour M, Mahmoodabadi E. A fast convergent two-step iterative method to solve the absolute value equation. UPB Sci Bull Ser A 2016:78:25–32.
  • [32] Mangasarian OL. A generalized Newton method for absolute value equations. Optim Lett 2009;3:101–108.
  • [33] Noor MA, Iqbal J, Noor KI, Al-Said E. On an iterative method for solving absolute value equations. Optim Lett 2012;6:1027–1033. [34] Rohn J, Hooshyarbakhsh V, Farhadsefat R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim Lett 2014;8:35–44.
  • [35] Kumar S, Deepmala. The unique solvability conditions for a new class of absolute value equation. Yugosl J Oper Res 2023;33:425–434.
  • [36] Mangasarian OL. Absolute value equation solution via concave minimization. Optim Lett 2007;1:3–8.
  • [37] Mangasarian OL. Sufficient conditions for the unsolvability and solvability of the absolute value equation. Optim Lett 2017;11:1–7.
  • [38] Rohn J. On unique solvability of the absolute value equation. Optim Lett 2009;3:603–606.
  • [39] Wu SL, Guo P. On the unique solvability of the absolute value equation. J Optim Theory Appl 2016;169:705–712.
  • [40] Wu SL, Li CX. The unique solution of the absolute value equations. Appl Math Lett 2018;76:195–200.
  • [41] Ghafouri A, Esmaily R, Alizadeh A. Numerical simulation of tank-treading and tumbling motion of red blood cell in the poiseuille flow in a microchannel with and without obstacle. Iran J Sci Technol Trans Mech Eng 2019;43:627–638.
  • [42] Islam MS. Lyapunov exponents of one dimensional chaotic dynamical systems via a general piecewise spline maximum entropy method. Fundam. J Math Appl 2019;2:130–138.
  • [43] Kumar S, Deepmala. Sufficient conditions for the unique solvability of absolute value matrix equations. arXiv preprint arXiv:2305.04495, 2023.
  • [44] Kumar S, Deepmala. A note on unique solvability of the generalized absolute value matrix equation. Natl Acad Sci Lett 2023;46:129–131.
  • [45] Kumar S, Deepmala. A note on the unique solvability condition for generalized absolute value matrix equation. J Numer Anal Approx Theory 2022;51:83–87.
  • [46] Tekin I, Cetin MA. Identification of the solely time-dependent zero-order coefficient in a linear bi-flux diffusion equation from an integral measurement. Fundam J Math Appl 2023;6:170–176.
  • [47] Wu SL, Li CX. A note on unique solvability of the absolute value equation. Optim Lett 2019;14:1957–1960.
  • [48] Wu SL, Shen S. On the unique solution of the generalized absolute value equation. Optim Lett 2021;15:2017–2024.
  • [49] Wu SL. The unique solution of a class of the new generalized absolute value equation. Appl Math Lett 2021;116;107029.
  • [50] Zhou H, Wu SL. On the unique solution of a class of absolute value equations Ax- B|Cx|= d. AIMS Mathematics 2021;6:8912–8919.
There are 49 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Articles
Authors

Shubham Kumar 0000-0001-5237-9719

Deepmala - 0000-0002-2600-6836

Publication Date February 28, 2025
Submission Date August 31, 2023
Published in Issue Year 2025 Volume: 43 Issue: 1

Cite

Vancouver Kumar S, - D. On unique solvability of linear complementarity problems, horizontal linear complementarity problems and an n-absolute value equations. SIGMA. 2025;43(1):160-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/