Research Article
BibTex RIS Cite
Year 2025, Volume: 43 Issue: 1, 15 - 24, 28.02.2025

Abstract

References

  • REFERENCES [1] Baldessarini RJ. Drug and the treatment of psychiatric disorders. Goodman and Gilman's the pharmacological basis of therapeutics. Psychol Med 1985:391–447. [2] Wang C, Niu J, Yin L, Huang J, Hou L-A. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem Eng J 2018;346:662–671. [CrossRef] https://doi.org/10.1016/j.cej.2018.03.159
  • [3] Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986;32:481–508. [CrossRef] https://doi.org/10.2165/00003495-198632060-00002
  • [4] Byeon E, Park JC, Hagiwara A, Han J, Lee J-S. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. Aquatic Toxicol 2020;218:105337. [CrossRef] https://doi.org/10.1016/j.aquatox.2019.105337
  • [5] Micheli L, Ceccarelli M, D'Andrea G, Tirone F. Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bullet 2018;143:181–193. [CrossRef] https://doi.org/10.1016/j.brainresbull.2018.09.002
  • [6] Brazón EM, Piccirillo C, Moreira I, Castro P. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. J Environ Manag 2016;182:486–495. [CrossRef] https://doi.org/10.1016/j.jenvman.2016.08.005
  • [7] Kwon JW, Armbrust KL. Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 2006;25:2561–2568. [CrossRef] https://doi.org/10.1897/05-613R.1
  • [8] Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal Chem 2007;79:9372–9384. [CrossRef] https://doi.org/10.1021/ac0715672
  • [9] Christensen AM, Markussen B, Baun A, Halling-Sørensen B. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere 2009;77:351–358. [CrossRef] https://doi.org/10.1016/j.chemosphere.2009.07.018
  • [10] Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environ Sci Technol 2002;36:1202–1211. [CrossRef] https://doi.org/10.1021/es011055j
  • [11] Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci Total Environ 2020;701:135023. [CrossRef] https://doi.org/10.1016/j.scitotenv.2019.135023
  • [12] Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 2013;228:944–964. [CrossRef] https://doi.org/10.1016/j.cej.2013.05.061
  • [13] Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J Environ Manag 2018;219:189–207. [CrossRef] https://doi.org/10.1016/j.jenvman.2018.04.103
  • [14] Paździor K, Bilińska L, Ledakowicz S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem Eng J 2019;376:120597. [CrossRef] https://doi.org/10.1016/j.cej.2018.12.057
  • [15] Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I. Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B Environ 2017;203:189–198. [CrossRef] https://doi.org/10.1016/j.apcatb.2016.10.026
  • [16] Vasudevan S, Oturan MA. Electrochemistry: as cause and cure in water pollution-an overview. Environ Chem Lett 2014;12:97–108. [CrossRef] https://doi.org/10.1007/s10311-013-0434-2
  • [17] Sires I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E. Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 2007;52:5493–5503. [CrossRef] https://doi.org/10.1016/j.electacta.2007.03.011
  • [18] García-Espinoza JD, Mijaylova-Nacheva P, Avilés-Flores M. Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 2018;192:142–151. [CrossRef] https://doi.org/10.1016/j.chemosphere.2017.10.147
  • [19] Pletcher D, Walsh FC. Industrial electrochemistry. New York: Springer Science & Business Media; 2012. [20] Shestakova M, Sillanpää M. Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Bio Technol 2017;16:223–238. [CrossRef] https://doi.org/10.1007/s11157-017-9426-1
  • [21] ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D. Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sustain Energy Rev 2017;72:1389–1403. [CrossRef] https://doi.org/10.1016/j.rser.2016.10.044
  • [22] Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A. Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chem Eng J 2013;221:418–425. [CrossRef] https://doi.org/10.1016/j.cej.2013.01.091
  • [23] Sirés I, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 2012;40:212–229. [CrossRef] https://doi.org/10.1016/j.envint.2011.07.012
  • [24] Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 2014;21:8336–8367. [CrossRef] https://doi.org/10.1007/s11356-014-2783-1
  • [25] Norouzi R, Zarei M, Khataee A, Ebratkhahan M, Rostamzadeh P. Electrochemical removal of fluoxetine via three mixed metal oxide anodes and carbonaceous cathodes from contaminated water. Environ Res 2022;207:112641. [CrossRef] https://doi.org/10.1016/j.envres.2021.112641
  • [26] Anees MI, Baig MS. Determination of Gemifloxacin and Ambroxol in Pharmaceutical Dosage form by UV Spectrophotometric method. J Med Chem Drug Discov 2015(Suppl): 402–408. [27] Turan NB, Çaglak A, Bakirdere S, Engin GÖ. Removal of selected micropollutants from synthetic wastewater by electrooxidation using oxidized titanium and graphite electrodes. CLEAN-Soil Air Water 2020;48:1900378. [CrossRef] https://doi.org/10.1002/clen.201900378
  • [28] Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev 2009;109:6541–6569. [CrossRef] https://doi.org/10.1021/cr9001319
  • [29] Fatta-Kassinos D, Dionysiou DD, Kümmerer K. Advanced Treatment Technologies for Urban Wastewater Reuse. New York: Springer; 2016. [CrossRef] https://doi.org/10.1007/978-3-319-23886-9
  • [30] Grassi M, Rizzo L, Farina A. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 2013;20:3616–3628. [CrossRef] https://doi.org/10.1007/s11356-013-1636-7
  • [31] Bosio M, de Souza-Chaves BM, Saggioro EM, Bassin JP, Dezotti MW, Quinta-Ferreira ME, et al. Electrochemical degradation of psychotropic pharmaceutical compounds from municipal wastewater and neurotoxicity evaluations. Environ Sci Pollut Res 2021;28:2395823974. [CrossRef] https://doi.org/10.1007/s11356-020-12133-9
  • [32] Melin V, Salgado P, Thiam A, Henríquez A, Mansilla HD, Yáñez J, et al. Study of degradation of amitriptyline antidepressant by different electrochemical advanced oxidation processes. Chemosphere 2021;274:129683. [CrossRef] https://doi.org/10.1016/j.chemosphere.2021.129683

Effective removal of fluoxetine using different dimensionally stable anodes (DSA) in an electro-oxidation process

Year 2025, Volume: 43 Issue: 1, 15 - 24, 28.02.2025

Abstract

Fluoxetine (FLX) (N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propane-1-amine) is an endocrine disrupting chemical (EDC) that is widely used in different countries around the world and is frequently found in the effluent of domestic wastewater treatment plants as well as in surface waters. In this study, the treatment of FLX by the electro-oxidation (EO) process using different dimensionally stable electrodes (DSA) was investigated. Anodes including ruthenium oxide coated N-type Ti sieve (Ti/RuO2), tantalum oxide coated N-type sieve with iridium oxide (Ti/IrO2-Ta2O5) and tin oxide coated N-type sieve electrodes with iridium/ruthenium oxide (Ti/Ir-Ru-Sn) were used, while a graphite electrode served as the cathode. The investigation focused on assessing the effect of operating parameters, specifically applied current, time, pH and initial FLX concentration. Although the Ti/RuO2 and Ti/Ir-Ru-Sn an-odes showed higher removal efficiencies at 10 min oxidation time, all three electrodes showed a remarkable 99.9% removal efficiency at the 20 min mark at pH 7, applied current 2 A and FLX concentration 20 mg/L. Notably, the Ti/IrO2-Ta2O5 electrode achieved the lowest specific energy consumption (SEC) values at both 10 and 20 min. Consequently, Ti/IrO2-Ta2O5 was considered the most effective electrode in terms of FLX removal efficiency and SEC values. The Ti/IrO2-Ta2O5 anode also shows superior performance (~100%) compared to other an-odes for all investigated FLX concentrations (5-40 mg/L) at 20 min oxidation time.

References

  • REFERENCES [1] Baldessarini RJ. Drug and the treatment of psychiatric disorders. Goodman and Gilman's the pharmacological basis of therapeutics. Psychol Med 1985:391–447. [2] Wang C, Niu J, Yin L, Huang J, Hou L-A. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem Eng J 2018;346:662–671. [CrossRef] https://doi.org/10.1016/j.cej.2018.03.159
  • [3] Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986;32:481–508. [CrossRef] https://doi.org/10.2165/00003495-198632060-00002
  • [4] Byeon E, Park JC, Hagiwara A, Han J, Lee J-S. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. Aquatic Toxicol 2020;218:105337. [CrossRef] https://doi.org/10.1016/j.aquatox.2019.105337
  • [5] Micheli L, Ceccarelli M, D'Andrea G, Tirone F. Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bullet 2018;143:181–193. [CrossRef] https://doi.org/10.1016/j.brainresbull.2018.09.002
  • [6] Brazón EM, Piccirillo C, Moreira I, Castro P. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. J Environ Manag 2016;182:486–495. [CrossRef] https://doi.org/10.1016/j.jenvman.2016.08.005
  • [7] Kwon JW, Armbrust KL. Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 2006;25:2561–2568. [CrossRef] https://doi.org/10.1897/05-613R.1
  • [8] Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal Chem 2007;79:9372–9384. [CrossRef] https://doi.org/10.1021/ac0715672
  • [9] Christensen AM, Markussen B, Baun A, Halling-Sørensen B. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere 2009;77:351–358. [CrossRef] https://doi.org/10.1016/j.chemosphere.2009.07.018
  • [10] Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environ Sci Technol 2002;36:1202–1211. [CrossRef] https://doi.org/10.1021/es011055j
  • [11] Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci Total Environ 2020;701:135023. [CrossRef] https://doi.org/10.1016/j.scitotenv.2019.135023
  • [12] Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 2013;228:944–964. [CrossRef] https://doi.org/10.1016/j.cej.2013.05.061
  • [13] Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J Environ Manag 2018;219:189–207. [CrossRef] https://doi.org/10.1016/j.jenvman.2018.04.103
  • [14] Paździor K, Bilińska L, Ledakowicz S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem Eng J 2019;376:120597. [CrossRef] https://doi.org/10.1016/j.cej.2018.12.057
  • [15] Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I. Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B Environ 2017;203:189–198. [CrossRef] https://doi.org/10.1016/j.apcatb.2016.10.026
  • [16] Vasudevan S, Oturan MA. Electrochemistry: as cause and cure in water pollution-an overview. Environ Chem Lett 2014;12:97–108. [CrossRef] https://doi.org/10.1007/s10311-013-0434-2
  • [17] Sires I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E. Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 2007;52:5493–5503. [CrossRef] https://doi.org/10.1016/j.electacta.2007.03.011
  • [18] García-Espinoza JD, Mijaylova-Nacheva P, Avilés-Flores M. Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 2018;192:142–151. [CrossRef] https://doi.org/10.1016/j.chemosphere.2017.10.147
  • [19] Pletcher D, Walsh FC. Industrial electrochemistry. New York: Springer Science & Business Media; 2012. [20] Shestakova M, Sillanpää M. Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Bio Technol 2017;16:223–238. [CrossRef] https://doi.org/10.1007/s11157-017-9426-1
  • [21] ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D. Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sustain Energy Rev 2017;72:1389–1403. [CrossRef] https://doi.org/10.1016/j.rser.2016.10.044
  • [22] Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A. Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chem Eng J 2013;221:418–425. [CrossRef] https://doi.org/10.1016/j.cej.2013.01.091
  • [23] Sirés I, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 2012;40:212–229. [CrossRef] https://doi.org/10.1016/j.envint.2011.07.012
  • [24] Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 2014;21:8336–8367. [CrossRef] https://doi.org/10.1007/s11356-014-2783-1
  • [25] Norouzi R, Zarei M, Khataee A, Ebratkhahan M, Rostamzadeh P. Electrochemical removal of fluoxetine via three mixed metal oxide anodes and carbonaceous cathodes from contaminated water. Environ Res 2022;207:112641. [CrossRef] https://doi.org/10.1016/j.envres.2021.112641
  • [26] Anees MI, Baig MS. Determination of Gemifloxacin and Ambroxol in Pharmaceutical Dosage form by UV Spectrophotometric method. J Med Chem Drug Discov 2015(Suppl): 402–408. [27] Turan NB, Çaglak A, Bakirdere S, Engin GÖ. Removal of selected micropollutants from synthetic wastewater by electrooxidation using oxidized titanium and graphite electrodes. CLEAN-Soil Air Water 2020;48:1900378. [CrossRef] https://doi.org/10.1002/clen.201900378
  • [28] Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev 2009;109:6541–6569. [CrossRef] https://doi.org/10.1021/cr9001319
  • [29] Fatta-Kassinos D, Dionysiou DD, Kümmerer K. Advanced Treatment Technologies for Urban Wastewater Reuse. New York: Springer; 2016. [CrossRef] https://doi.org/10.1007/978-3-319-23886-9
  • [30] Grassi M, Rizzo L, Farina A. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 2013;20:3616–3628. [CrossRef] https://doi.org/10.1007/s11356-013-1636-7
  • [31] Bosio M, de Souza-Chaves BM, Saggioro EM, Bassin JP, Dezotti MW, Quinta-Ferreira ME, et al. Electrochemical degradation of psychotropic pharmaceutical compounds from municipal wastewater and neurotoxicity evaluations. Environ Sci Pollut Res 2021;28:2395823974. [CrossRef] https://doi.org/10.1007/s11356-020-12133-9
  • [32] Melin V, Salgado P, Thiam A, Henríquez A, Mansilla HD, Yáñez J, et al. Study of degradation of amitriptyline antidepressant by different electrochemical advanced oxidation processes. Chemosphere 2021;274:129683. [CrossRef] https://doi.org/10.1016/j.chemosphere.2021.129683
There are 29 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Omer Kaan Onen This is me 0009-0002-2711-8829

Ali Dogancan Dogan This is me 0009-0001-6080-5172

Narin Kara This is me 0009-0005-8278-1748

Hanife Sarı Erkan

Güleda Onkal Engin 0000-0002-3841-8440

Publication Date February 28, 2025
Submission Date August 1, 2023
Published in Issue Year 2025 Volume: 43 Issue: 1

Cite

Vancouver Onen OK, Dogan AD, Kara N, Sarı Erkan H, Onkal Engin G. Effective removal of fluoxetine using different dimensionally stable anodes (DSA) in an electro-oxidation process. SIGMA. 2025;43(1):15-24.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/