Review
BibTex RIS Cite

The Effects of Agricultural Tire Technologies on Soil Compaction, Traction Performance and Agricultural Productivity

Year 2024, , 64 - 80, 31.12.2024
https://doi.org/10.70030/sjmakeu.1563596

Abstract

This review article examines the impact of agricultural tire technologies on soil compaction, traction performance, and agricultural productivity. Topics such as the stress distribution of low-inflation pressure tires on soil, the effects of tire profiles on performance and soil compaction are discussed in depth. Moreover, the impact of tires on traction and soil compaction under different inflation pressures is explored. A thorough analysis of the existing literature reveals significant contributions to improving the efficiency of agricultural tires and reducing the risk of soil compaction. The findings reveal that low-inflation pressure next-generation tires (IF/VF tires) significantly reduce soil compaction by providing a larger contact area. Furthermore, it was concluded that selecting the appropriate inflation pressure and load distribution is critical for optimizing traction and energy efficiency. This review provides valuable insights for future studies and contributes to sustainable agricultural practices.

References

  • Arvidsson J, Keller T. (2007). Soil stress as affected by wheel load and tyre inflation pressure. Soil and Tillage Research. 96(1):284-91 https://doi.org/10.1016/j.still.2007.06.012
  • Way TR, Kishimoto T. (2004). Interface Pressures of a Tractor Drive Tyre on Structured and Loose Soils. Biosystems Engineering. 87(3):375-86. https://doi.org/10.1016/j.biosystemseng.2003.12.001
  • ten Damme L, Stettler M, Pinet F, Vervaet P, Keller T, Munkholm LJ, et al. (2020) Construction of modern wide, low-inflation pressure tyres per se does not affect soil stress. Soil and Tillage Research. 204:104708. https://doi.org/10.1016/j.still.2020.104708
  • Janulevičius A, Damanauskas V. (2022). Prediction of tractor drive tire slippage under different inflation pressures. Journal of Terramechanics. 101:23-31. https://doi.org/10.1016/j.jterra.2022.03.001
  • Keller T. (2005). A model for the prediction of the contact area and the distribution of vertical stress below agricultural tyres from readily available tyre parameters. Biosystems engineering. 92(1):85-96. https://doi.org/10.1016/j.biosystemseng.2005.05.012
  • Rodríguez LA, Valencia JJ, Urbano JA. (2012). Soil compaction and tires for harvesting and transporting sugarcane. Journal of Terramechanics. 49(3):183-189. https://doi.org/10.1016/j.jterra.2012.04.002
  • Karaçay O, Kılıç S. (2024). Traktör Uygulamalarında Kullanılan Standart Yapı ve IF Lastik Yapısına Sahip Lastiklerin Taban İzlerinin ve Sehim Değerlerinin Kıyaslanması. Karaelmas Fen ve Mühendislik Dergisi.14(2):111-118.
  • Harris BJ. Increased Deflection Agricultural Radial Tires Following the Tire and Rim Association IF, VF, and IF/CFO Load and Inflation Standards. (2017). https://elibrary.asabe.org/data/pdf/6/913c0117/913C0117.pdf
  • Shaheb MR, Venkatesh R, Shearer SA. (2021). A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. Journal of Biosystems Engineering. 46(4):417-439. https://doi.org/10.1007/s42853-021-00117-7
  • Michelin. Lastik Teknolojisi.(2024). [Available from: https://pro.michelin.com.tr/lastik]
  • Renius K. CIGR. (1999).Handbook of Agricultural Engineering, Volume III Plant Production Engineering, Chapter 1 Machines for Crop Production, Parts 1.1. 27-1.1. 33 Tractors: Two Axle Tractors. https://doi.org/10.13031/2013.36342
  • Maclaurin B. (2014).Using a modified version of the Magic Formula to describe the traction/slip relationships of tyres in soft cohesive soils. Journal of Terramechanics.52:1-7. https://doi.org/10.1016/j.jterra.2013.11.005
  • Kumar S, Pandey KP, Kumar R, Ashok Kumar A. (2018). Effect of ballasting on performance characteristics of bias and radial ply tyres with zero sinkage. Measurement. 121:218-224. https://doi.org/10.1016/j.measurement.2018.02.043
  • Cokertire. Bias Ply or Radial | What is the Right Choice for Your Collector Car? (2024). [Available from: https://www.cokertire.com/bias-ply-radial]
  • Komandi G. (1976). The determination of the deflection, contact area, dimensions, and load carrying capacity for driven pneumatic tires operating on concrete pavement. Journal of Terramechanics. 13(1):15-20. https://doi.org/10.1016/0022-4898(76)90028-8
  • Komandi G. (1990). Establishment of soil-mechanical parameters which determine traction on deforming soil. Journal of Terramechanics. 27(2):115-124. https://doi.org/10.1016/0022-4898(90)90004-6
  • ten Damme L, Stettler M, Pinet F, Vervaet P, Keller T, Munkholm LJ, et al. (1990). The contribution of tyre evolution to the reduction of soil compaction risks. Soil and Tillage Research. 194:104283. https://doi.org/10.1016/j.still.2019.05.029
  • Eggers C, Berli M, Accorsi M, Or D. (2006). Deformation and permeability of aggregated soft earth materials. Journal of Geophysical Research: Solid Earth. 111(B10). https://doi.org/10.1029/2005JB004123
  • Boussinesq J. (1885). Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: principalement au calcul des deformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur und petite partie de leur surface ou de leur intérieur; memoire suivi de notes étendues sur divers points de physique mathématique et d'analyse: Gauthier-Villars.
  • Das BM, Sobhan K. (1990). Principles of geotechnical engineering.
  • Oh J, Nam J-S, Kim S, Park Y-J. (2019). Influence of tire inflation pressure on the estimation of rating cone index using wheel sinkage. Journal of Terramechanics. 84:13-20.
  • Misiewicz PA, Richards TE, Blackburn K, Godwin RJ. (2016). Comparison of methods for estimating the carcass stiffness of agricultural tyres on hard surfaces. Biosystems Engineering. 147:183-192. https://doi.org/10.1016/j.biosystemseng.2016.03.001
  • Arvidsson J, Westlin H, Keller T, (2011).Gilbertsson M. Rubber track systems for conventional tractors–Effects on soil compaction and traction. Soil and Tillage Research. 117:103-109. https://doi.org/10.1016/j.still.2011.09.004
  • People's Republic of China, from https://tr.made-in-china.com, accessed on 2024-10-01
  • Jjagwe P, Tekeste MZ, Alkhalifa N, Way TR. (2023). Modeling tire-soil compression resistance on artificial soil using the scaling law of pressure-soil sinkage relationship. Journal of Terramechanics. 108:7-19. https://doi.org/10.1016/j.jterra.2023.02.002
  • Fröhlich OK. (1934). Druckverteilung im Baugrunde: mit besonderer Berücksichtigung der plastischen Erscheinungen. Springer.
  • Hallonborg U. (1996).Super ellipse as tyre-ground contact area. Journal of Terramechanics. 33(3):125-132. https://doi.org/10.1016/S0022-4898(96)00013-4
  • Berisso FE, Schjønning P, Lamandé M, Weisskopf P, Stettler M, Keller T. (2013). Effects of the stress field induced by a running tyre on the soil pore system. Soil and Tillage Research. 131:36-46. https://doi.org/10.1016/j.still.2013.03.005
  • Berli M, Eggers C, Accorsi M, Or D. (2006). Theoretical analysis of fluid inclusions for in situ soil stress and deformation measurements. Soil Science Society of America Journal. 70(5):1441-1452. https://doi.org/10.2136/sssaj2005.0171
  • Grečenko A. (1995). Tyre footprint area on hard ground computed from catalogue values. Journal of Terramechanics. 32(6):325-333. https://doi.org/10.1016/0022-4898(96)00003-1
  • Keller T, Défossez P, Weisskopf P, Arvidsson J, Richard G. (2021). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research. 93(2):391-411. https://doi.org/10.1016/j.still.2006.05.012
  • Larson W, Gupta S, Useche R. (1980). Compression of agricultural soils from eight soil orders. Soil Science Society of America Journal. 44(3):450-457. https://doi.org/10.2136/sssaj1980.03615995004400030002x
  • Bailey A, Johnson C. (1988).A soil compaction model for cylindrical stress states. https://www.cabidigitallibrary.org/doi/full/10.5555/19892439345
  • O'Sullivan M, Robertson E. (1996). Critical state parameters from intact samples of two agricultural topsoils. Soil and Tillage Research. 39(3-4):161-173. https://doi.org/10.1016/S0167-1987(96)01068-9
  • Cerruti V. (1893). Sulla deformazione di un corpo elastico isotropo per alcune speciali condizioni ai limiti. Il Nuovo Cimento (1877-1894). 34(1):115-24. https://doi.org/10.1007/BF02709665
  • Keller T, Berli M, Ruiz S, Lamandé M, Arvidsson J, Schjønning P, et al. (2014). Transmission of vertical soil stress under agricultural tyres: Comparing measurements with simulations. Soil and Tillage Research. 140:106-17. https://doi.org/10.1016/j.still.2014.03.001
  • Söhne W. (1953). Druckverteilung im boden und bodenverformung unter schlepperreifen. Grundlagen der Landtechnik-Konstrukteurhefte. (5): 49-63.
Year 2024, , 64 - 80, 31.12.2024
https://doi.org/10.70030/sjmakeu.1563596

Abstract

References

  • Arvidsson J, Keller T. (2007). Soil stress as affected by wheel load and tyre inflation pressure. Soil and Tillage Research. 96(1):284-91 https://doi.org/10.1016/j.still.2007.06.012
  • Way TR, Kishimoto T. (2004). Interface Pressures of a Tractor Drive Tyre on Structured and Loose Soils. Biosystems Engineering. 87(3):375-86. https://doi.org/10.1016/j.biosystemseng.2003.12.001
  • ten Damme L, Stettler M, Pinet F, Vervaet P, Keller T, Munkholm LJ, et al. (2020) Construction of modern wide, low-inflation pressure tyres per se does not affect soil stress. Soil and Tillage Research. 204:104708. https://doi.org/10.1016/j.still.2020.104708
  • Janulevičius A, Damanauskas V. (2022). Prediction of tractor drive tire slippage under different inflation pressures. Journal of Terramechanics. 101:23-31. https://doi.org/10.1016/j.jterra.2022.03.001
  • Keller T. (2005). A model for the prediction of the contact area and the distribution of vertical stress below agricultural tyres from readily available tyre parameters. Biosystems engineering. 92(1):85-96. https://doi.org/10.1016/j.biosystemseng.2005.05.012
  • Rodríguez LA, Valencia JJ, Urbano JA. (2012). Soil compaction and tires for harvesting and transporting sugarcane. Journal of Terramechanics. 49(3):183-189. https://doi.org/10.1016/j.jterra.2012.04.002
  • Karaçay O, Kılıç S. (2024). Traktör Uygulamalarında Kullanılan Standart Yapı ve IF Lastik Yapısına Sahip Lastiklerin Taban İzlerinin ve Sehim Değerlerinin Kıyaslanması. Karaelmas Fen ve Mühendislik Dergisi.14(2):111-118.
  • Harris BJ. Increased Deflection Agricultural Radial Tires Following the Tire and Rim Association IF, VF, and IF/CFO Load and Inflation Standards. (2017). https://elibrary.asabe.org/data/pdf/6/913c0117/913C0117.pdf
  • Shaheb MR, Venkatesh R, Shearer SA. (2021). A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. Journal of Biosystems Engineering. 46(4):417-439. https://doi.org/10.1007/s42853-021-00117-7
  • Michelin. Lastik Teknolojisi.(2024). [Available from: https://pro.michelin.com.tr/lastik]
  • Renius K. CIGR. (1999).Handbook of Agricultural Engineering, Volume III Plant Production Engineering, Chapter 1 Machines for Crop Production, Parts 1.1. 27-1.1. 33 Tractors: Two Axle Tractors. https://doi.org/10.13031/2013.36342
  • Maclaurin B. (2014).Using a modified version of the Magic Formula to describe the traction/slip relationships of tyres in soft cohesive soils. Journal of Terramechanics.52:1-7. https://doi.org/10.1016/j.jterra.2013.11.005
  • Kumar S, Pandey KP, Kumar R, Ashok Kumar A. (2018). Effect of ballasting on performance characteristics of bias and radial ply tyres with zero sinkage. Measurement. 121:218-224. https://doi.org/10.1016/j.measurement.2018.02.043
  • Cokertire. Bias Ply or Radial | What is the Right Choice for Your Collector Car? (2024). [Available from: https://www.cokertire.com/bias-ply-radial]
  • Komandi G. (1976). The determination of the deflection, contact area, dimensions, and load carrying capacity for driven pneumatic tires operating on concrete pavement. Journal of Terramechanics. 13(1):15-20. https://doi.org/10.1016/0022-4898(76)90028-8
  • Komandi G. (1990). Establishment of soil-mechanical parameters which determine traction on deforming soil. Journal of Terramechanics. 27(2):115-124. https://doi.org/10.1016/0022-4898(90)90004-6
  • ten Damme L, Stettler M, Pinet F, Vervaet P, Keller T, Munkholm LJ, et al. (1990). The contribution of tyre evolution to the reduction of soil compaction risks. Soil and Tillage Research. 194:104283. https://doi.org/10.1016/j.still.2019.05.029
  • Eggers C, Berli M, Accorsi M, Or D. (2006). Deformation and permeability of aggregated soft earth materials. Journal of Geophysical Research: Solid Earth. 111(B10). https://doi.org/10.1029/2005JB004123
  • Boussinesq J. (1885). Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: principalement au calcul des deformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur und petite partie de leur surface ou de leur intérieur; memoire suivi de notes étendues sur divers points de physique mathématique et d'analyse: Gauthier-Villars.
  • Das BM, Sobhan K. (1990). Principles of geotechnical engineering.
  • Oh J, Nam J-S, Kim S, Park Y-J. (2019). Influence of tire inflation pressure on the estimation of rating cone index using wheel sinkage. Journal of Terramechanics. 84:13-20.
  • Misiewicz PA, Richards TE, Blackburn K, Godwin RJ. (2016). Comparison of methods for estimating the carcass stiffness of agricultural tyres on hard surfaces. Biosystems Engineering. 147:183-192. https://doi.org/10.1016/j.biosystemseng.2016.03.001
  • Arvidsson J, Westlin H, Keller T, (2011).Gilbertsson M. Rubber track systems for conventional tractors–Effects on soil compaction and traction. Soil and Tillage Research. 117:103-109. https://doi.org/10.1016/j.still.2011.09.004
  • People's Republic of China, from https://tr.made-in-china.com, accessed on 2024-10-01
  • Jjagwe P, Tekeste MZ, Alkhalifa N, Way TR. (2023). Modeling tire-soil compression resistance on artificial soil using the scaling law of pressure-soil sinkage relationship. Journal of Terramechanics. 108:7-19. https://doi.org/10.1016/j.jterra.2023.02.002
  • Fröhlich OK. (1934). Druckverteilung im Baugrunde: mit besonderer Berücksichtigung der plastischen Erscheinungen. Springer.
  • Hallonborg U. (1996).Super ellipse as tyre-ground contact area. Journal of Terramechanics. 33(3):125-132. https://doi.org/10.1016/S0022-4898(96)00013-4
  • Berisso FE, Schjønning P, Lamandé M, Weisskopf P, Stettler M, Keller T. (2013). Effects of the stress field induced by a running tyre on the soil pore system. Soil and Tillage Research. 131:36-46. https://doi.org/10.1016/j.still.2013.03.005
  • Berli M, Eggers C, Accorsi M, Or D. (2006). Theoretical analysis of fluid inclusions for in situ soil stress and deformation measurements. Soil Science Society of America Journal. 70(5):1441-1452. https://doi.org/10.2136/sssaj2005.0171
  • Grečenko A. (1995). Tyre footprint area on hard ground computed from catalogue values. Journal of Terramechanics. 32(6):325-333. https://doi.org/10.1016/0022-4898(96)00003-1
  • Keller T, Défossez P, Weisskopf P, Arvidsson J, Richard G. (2021). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research. 93(2):391-411. https://doi.org/10.1016/j.still.2006.05.012
  • Larson W, Gupta S, Useche R. (1980). Compression of agricultural soils from eight soil orders. Soil Science Society of America Journal. 44(3):450-457. https://doi.org/10.2136/sssaj1980.03615995004400030002x
  • Bailey A, Johnson C. (1988).A soil compaction model for cylindrical stress states. https://www.cabidigitallibrary.org/doi/full/10.5555/19892439345
  • O'Sullivan M, Robertson E. (1996). Critical state parameters from intact samples of two agricultural topsoils. Soil and Tillage Research. 39(3-4):161-173. https://doi.org/10.1016/S0167-1987(96)01068-9
  • Cerruti V. (1893). Sulla deformazione di un corpo elastico isotropo per alcune speciali condizioni ai limiti. Il Nuovo Cimento (1877-1894). 34(1):115-24. https://doi.org/10.1007/BF02709665
  • Keller T, Berli M, Ruiz S, Lamandé M, Arvidsson J, Schjønning P, et al. (2014). Transmission of vertical soil stress under agricultural tyres: Comparing measurements with simulations. Soil and Tillage Research. 140:106-17. https://doi.org/10.1016/j.still.2014.03.001
  • Söhne W. (1953). Druckverteilung im boden und bodenverformung unter schlepperreifen. Grundlagen der Landtechnik-Konstrukteurhefte. (5): 49-63.
There are 37 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Review Articles
Authors

Onur Karaçay 0000-0002-3650-816X

Süleyman Kılıç 0000-0002-1681-9403

Early Pub Date November 26, 2024
Publication Date December 31, 2024
Submission Date October 8, 2024
Acceptance Date November 2, 2024
Published in Issue Year 2024

Cite

APA Karaçay, O., & Kılıç, S. (2024). The Effects of Agricultural Tire Technologies on Soil Compaction, Traction Performance and Agricultural Productivity. Scientific Journal of Mehmet Akif Ersoy University, 7(2), 64-80. https://doi.org/10.70030/sjmakeu.1563596