Fabrication of microinjector system (SIM) using anodic aluminum oxide
Year 2018,
Volume: 1 Issue: 2, 36 - 39, 20.11.2018
Rehana Nazir
,
Ajab Khan Kasi
,
Jafar Khan Kasi
Abstract
The present study provide method to construct a
novel type of micro-injector system (MIS) for microfliudic delivery inside
nanoporous anodic aluminum oxide (AAO) membrane. Now a day’s these micro and
nano combined structure gain attention in medical and biological applications.
This fabricated micro-nano structure consists of a thin film of anodic aluminum
oxide having 50-100μm wider and 12μm deeper channel. A thin Anodic Aluminum
Oxide (AAO) is fabricated by combing Mild anodization in oxalic and Hard anodization
(H.A) in sulphuric acid. The dimension and an anisotropic etching were
investigated by scanning electron microscopy (SEM). These channels are used for
fluid flow on micro scale. These channels are connected with a nozzle like
microchannel which can perform fluid injection function. This microinjector system is simply
manufactured by embedded microchannel and there is no moving micro part inside
nanoporous membrane. Fabrication process is mainly based on photolithography
and wet chemical etching technique. Wet
chemical etching takes place in 5 wt% of phosphoric acid solution. Dimensions
and the shape of these microchannels depend solely on anodization and etching
conditions. The presented system can be used into two way: in first way the
fluid can be injected through nozzle like channel inside AAO and in second way
the liquid can be purify and filtrate through nanoporous AAO membran. This
study provides a low cost fabricated micro-nano combined structure which could
be further used in different types of microfluidic devices and enable the
device to perform the function of injection, filtration and purification.
References
- [1] Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An updated review. International journal of pharmaceutical investigation, 2(1), 2.
- [2] Tao, S. L., & Desai, T. A. (2003). Microfabricated drug delivery systems: from particles to pores. Advanced drug delivery reviews, 55(3), 315-328.
- [3] Ainslie, K. M., & Desai, T. A. (2008). Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab on a Chip, 8(11), 1864-1878.
- [4] Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12), 751.
- [5] Panchagnula R. Transdermal(1997) delivery of drugs. Indian J Pharmacol. ;29:140–56.
- [6] Moon, S. J., & Lee, S. S. (2005). A novel fabrication method of a microneedle array using inclined deep x-ray exposure. Journal of Micromechanics and Microengineering, 15(5), 903
- [7] Yu, L. M., Tay, F. E. H., Guo, D. G., Xu, L., & Yap, K. L. (2009). A microfabricated electrode with hollow microneedles for ECG measurement. Sensors and Actuators A: Physical, 151(1), 17-22.
- [8]Cornell, E., Fisher, W. W., Nordmeyer, R., Yegian, D., Dong, M., Biggin, M. D., ... & Jin, J. (2008). Automating fruit fly Drosophila embryo injection for high throughput transgenic studies. Review of Scientific Instruments, 79(1), 013705.
- [9] Zappe, S., Fish, M., Scott, M. P., & Solgaard, O. (2006). Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens. Lab on a Chip, 6(8), 1012-1019.
- [10]De Jong, J., Lammertink, R. G., & Wessling, M. (2006). Membranes and microfluidics: a review. Lab on a Chip, 6(9), 1125-1139.
- [11]Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., & Gösele, U. (2008). Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature nanotechnology, 3(4), 234.
Year 2018,
Volume: 1 Issue: 2, 36 - 39, 20.11.2018
Rehana Nazir
,
Ajab Khan Kasi
,
Jafar Khan Kasi
References
- [1] Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An updated review. International journal of pharmaceutical investigation, 2(1), 2.
- [2] Tao, S. L., & Desai, T. A. (2003). Microfabricated drug delivery systems: from particles to pores. Advanced drug delivery reviews, 55(3), 315-328.
- [3] Ainslie, K. M., & Desai, T. A. (2008). Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab on a Chip, 8(11), 1864-1878.
- [4] Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12), 751.
- [5] Panchagnula R. Transdermal(1997) delivery of drugs. Indian J Pharmacol. ;29:140–56.
- [6] Moon, S. J., & Lee, S. S. (2005). A novel fabrication method of a microneedle array using inclined deep x-ray exposure. Journal of Micromechanics and Microengineering, 15(5), 903
- [7] Yu, L. M., Tay, F. E. H., Guo, D. G., Xu, L., & Yap, K. L. (2009). A microfabricated electrode with hollow microneedles for ECG measurement. Sensors and Actuators A: Physical, 151(1), 17-22.
- [8]Cornell, E., Fisher, W. W., Nordmeyer, R., Yegian, D., Dong, M., Biggin, M. D., ... & Jin, J. (2008). Automating fruit fly Drosophila embryo injection for high throughput transgenic studies. Review of Scientific Instruments, 79(1), 013705.
- [9] Zappe, S., Fish, M., Scott, M. P., & Solgaard, O. (2006). Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens. Lab on a Chip, 6(8), 1012-1019.
- [10]De Jong, J., Lammertink, R. G., & Wessling, M. (2006). Membranes and microfluidics: a review. Lab on a Chip, 6(9), 1125-1139.
- [11]Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., & Gösele, U. (2008). Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature nanotechnology, 3(4), 234.