Year 2020,
Volume: 3 Issue: 1, 1 - 7, 26.02.2020
Ataollah Khanları
,
Adnan Sözen
,
Ceylin Şirin
,
Yaşar Can Bilge
Azim Doğuş Tuncer
,
Afşin Güngör
References
- [1]. Işık, A.H., Düden Örgen, F.K., Şirin, C., Tuncer, A.D., & Güngör, A., (2019). Prediction of wind blowing durations of Eastern Turkey with machine learning for integration of renewable energy and organic farming‐stock raising. Tecnho-Science, 2, 47-53.
- [2]. Panayiotou, G., Kalogirou, S., & Tassou, S., (2012). Design and simulation of a PV and a PV-Wind standalone energy system to power a household application, Renewable Energy, 37,355-363.
- [3]. Khanlari, A., Sözen, A., Afshari, F., Şirin, C., Tuncer, A.D., & Gungor, A., (2020). Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber, Science of The Total Environment, 709, 136198.
- [4]. Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D., & Gungor, A., (2020). Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater, Journal of Cleaner Production, 251, 119672.
- [5]. Azaizia, Z., Kooli, S., Elkhadraoui, A., & Hamdi, A.A., (2017). Guizani, Investigation of a new solar greenhouse drying system for peppers, International Journal of Hydrogen Energy, 42, 8818-8826.
- [6]. Güler, H.Ö., Sözen, A., Tuncer, A.D., Afshari, F., Khanlari, A., Şirin, C., & Gungor, A., (2020). Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh, Solar Energy, 197, 371-384.
- [7]. Koçer A., Şevik S., & Güngör A., (2016). Determination of Solar Collector Optimum Tilt Angle for Ankara and Districts, Uludağ University Journal of The Faculty of Engineering, 21, 63-78.
- [8]. Kaya, M., Gürel, A.E., Ağbulut, Ü., Ceylan, I., Çelik, S., Ergün, A., & Acar, B., (2019). Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe. Energy Conversion and Management, 199, 111936.
- [9]. Fudholi, A., Sopian, K., Ruslan, M.H., & Othman, M.Y. (2013). Performance and cost benefits analysis of double-pass solar collector with and without fins. Energy conversion and management, 76, 8-19.
- [10]. Afshari, F., Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D., & Güngör, A., (2019). CFD analysis on fin and baffle configurations in solar air collector. Energy And Environmental Studies For The Near Future, 79-87, Akademisyen Publishing, Ankara, Turkey.
- [11]. Hu, J., Liu, K., Ma, L., & Sun, X., (2018). Parameter optimization of solar air collectors with holes on baffle and analysis of flow and heat transfer characteristics. Solar Energy, 174, 878-887.
- [12]. Khanlari, A., Güler, H.Ö., Tuncer, A.D., Şirin, C., Bilge, Y.C., Yılmaz, Y., & Güngör, A., (2020). Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy, 145, 1677-1692.
- [13]. Ghiami, A., & Ghiami, S. (2018). Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering, 133, 797-808.
- [14]. Elminshawy, N.A.S., Ghandour, M.E.I., Gad, H.M. El-Damhogi, D.G., El-Nahhas K., & Addas, M.F., (2019). The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures, Geothermics, 82, 7-15.
- [15]. Dhoke, A., Sharma, R., & Saha, T.K., (2019). An approach for fault detection and location in solar PV systems, Solar Energy, 194, 197-208.
- [16]. Sellami, R., Amirat, M., Mahrane, A., El-Amine Slimani, M., Arbane, A., & Chekrouni, R., (2019). Experimental and numerical study of a PV/Thermal collector equipped with a PV-assisted air circulation system: Configuration suitable for building integration, Energy and Buildings, 190, 216-234.
- [17]. Huo, Y., Lv, J., Li, X., Fang, L., Ma, X., & Shi, Q., (2019). Experimental study on the tube plate PV/T system with iron filings filled, Solar Energy, 185,189-198.
- [18]. Bambrok, S.M., & Sproul, A.B. (2012). Maximising the energy output of a PVT air system. Solar Energy, 86, 1857-1871.
- [19]. Sethi, V.P., Sumathy, K., Yuvarajan, S., & Pal, D.S., (2012). Mathematical model for computing maximum power output of a PV solar module and experimental validation. Ashdin Publ. J. Fundam. Renew. Energy Appl. 2(5), 1–5.
- [20]. Kaldellis, J.K., Kapsali, M., & Kavadias, K., (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy, 66, 612–624.
Experimental investigation of photovoltaic panel surface temperature at various tilt angles
Year 2020,
Volume: 3 Issue: 1, 1 - 7, 26.02.2020
Ataollah Khanları
,
Adnan Sözen
,
Ceylin Şirin
,
Yaşar Can Bilge
Azim Doğuş Tuncer
,
Afşin Güngör
Abstract
By growing the population of the world, the demand for clean and renewable energy resources is increasing, because fossil energy sources available are limited. Solar energy is a sustainable energy source which is widely accessible. Photovoltaic systems are utilized to generate electrical energy from solar radiation. Photovoltaic panel temperature is a major parameter that influence its effectiveness. Decreasing photovoltaic temperature could be rise its performance. In this work, Photovoltaic panel surface temperature has been measured at various tilt angles. This data research consists of time-depending photovoltaic module and tedlar temperature values with climatic characteristics of the test region. In the experimental section, photovoltaic panel were placed at 30°, 32° and 34° tilt angles. Temperature values were obtained from the front glass and tedlar foil. The main goal of this study is investigating the influence of tilt angle on photovoltaic temperature which could be used in numerical works such CFD simulation.
References
- [1]. Işık, A.H., Düden Örgen, F.K., Şirin, C., Tuncer, A.D., & Güngör, A., (2019). Prediction of wind blowing durations of Eastern Turkey with machine learning for integration of renewable energy and organic farming‐stock raising. Tecnho-Science, 2, 47-53.
- [2]. Panayiotou, G., Kalogirou, S., & Tassou, S., (2012). Design and simulation of a PV and a PV-Wind standalone energy system to power a household application, Renewable Energy, 37,355-363.
- [3]. Khanlari, A., Sözen, A., Afshari, F., Şirin, C., Tuncer, A.D., & Gungor, A., (2020). Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber, Science of The Total Environment, 709, 136198.
- [4]. Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D., & Gungor, A., (2020). Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater, Journal of Cleaner Production, 251, 119672.
- [5]. Azaizia, Z., Kooli, S., Elkhadraoui, A., & Hamdi, A.A., (2017). Guizani, Investigation of a new solar greenhouse drying system for peppers, International Journal of Hydrogen Energy, 42, 8818-8826.
- [6]. Güler, H.Ö., Sözen, A., Tuncer, A.D., Afshari, F., Khanlari, A., Şirin, C., & Gungor, A., (2020). Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh, Solar Energy, 197, 371-384.
- [7]. Koçer A., Şevik S., & Güngör A., (2016). Determination of Solar Collector Optimum Tilt Angle for Ankara and Districts, Uludağ University Journal of The Faculty of Engineering, 21, 63-78.
- [8]. Kaya, M., Gürel, A.E., Ağbulut, Ü., Ceylan, I., Çelik, S., Ergün, A., & Acar, B., (2019). Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe. Energy Conversion and Management, 199, 111936.
- [9]. Fudholi, A., Sopian, K., Ruslan, M.H., & Othman, M.Y. (2013). Performance and cost benefits analysis of double-pass solar collector with and without fins. Energy conversion and management, 76, 8-19.
- [10]. Afshari, F., Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D., & Güngör, A., (2019). CFD analysis on fin and baffle configurations in solar air collector. Energy And Environmental Studies For The Near Future, 79-87, Akademisyen Publishing, Ankara, Turkey.
- [11]. Hu, J., Liu, K., Ma, L., & Sun, X., (2018). Parameter optimization of solar air collectors with holes on baffle and analysis of flow and heat transfer characteristics. Solar Energy, 174, 878-887.
- [12]. Khanlari, A., Güler, H.Ö., Tuncer, A.D., Şirin, C., Bilge, Y.C., Yılmaz, Y., & Güngör, A., (2020). Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy, 145, 1677-1692.
- [13]. Ghiami, A., & Ghiami, S. (2018). Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering, 133, 797-808.
- [14]. Elminshawy, N.A.S., Ghandour, M.E.I., Gad, H.M. El-Damhogi, D.G., El-Nahhas K., & Addas, M.F., (2019). The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures, Geothermics, 82, 7-15.
- [15]. Dhoke, A., Sharma, R., & Saha, T.K., (2019). An approach for fault detection and location in solar PV systems, Solar Energy, 194, 197-208.
- [16]. Sellami, R., Amirat, M., Mahrane, A., El-Amine Slimani, M., Arbane, A., & Chekrouni, R., (2019). Experimental and numerical study of a PV/Thermal collector equipped with a PV-assisted air circulation system: Configuration suitable for building integration, Energy and Buildings, 190, 216-234.
- [17]. Huo, Y., Lv, J., Li, X., Fang, L., Ma, X., & Shi, Q., (2019). Experimental study on the tube plate PV/T system with iron filings filled, Solar Energy, 185,189-198.
- [18]. Bambrok, S.M., & Sproul, A.B. (2012). Maximising the energy output of a PVT air system. Solar Energy, 86, 1857-1871.
- [19]. Sethi, V.P., Sumathy, K., Yuvarajan, S., & Pal, D.S., (2012). Mathematical model for computing maximum power output of a PV solar module and experimental validation. Ashdin Publ. J. Fundam. Renew. Energy Appl. 2(5), 1–5.
- [20]. Kaldellis, J.K., Kapsali, M., & Kavadias, K., (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy, 66, 612–624.