Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 63 - 76, 24.08.2020

Abstract

References

  • [1] IEA, (2017). CO2 Emissions from Fuel Combustion 2017. International Energy Agency. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019
  • [2] Can, A. (2020). The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. J. Clean. Prod., 243, 118501, DOI: 10.1016/j.jclepro.2019.118501.
  • [3] Ahmed, S. I., Johari, A., Hashim, H., Mat, R., Lim, J. S., Ngadi, N., Ali, A. (2015). Optimal landfill gas utilization for renewable energy production. Environ. Prog. Sustain. Energy, 34, 289–296, DOI: 10.1002/ep.11964.
  • [4] Li, S., Yoo, H. K., Macauley, M., Palmer, K., Shih, J.-S. (2015). Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Econ., 49, 687–697. DOI: 10.1016/j.eneco.2015.03.022.
  • [5] Singh, C. K., Kumar, A., Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci. Rep., 8, 2913. DOI: 10.1038/s41598-018-21326-9.
  • [6] Mambeli Barros, R., Tiago Filho, G. L., da Silva, T. R. (2014). The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150–164. DOI: 10.1016/j.enpol.2013.10.028.
  • [7] Johari, A., Ahmed, S. I., Hashim, H., Alkali, H., Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev., 16, 2907–2912. DOI: 10.1016/j.rser.2012.02.005.
  • [8] Tercan, S. H., Cabalar, A. F., Yaman, G. (2015). Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey. J. Air Waste Manag. Assoc., 65, 912–918. DOI: 10.1080/10962247.2015.1036178.
  • [9] Noor, Z. Z., Yusuf, R. O., Abba, A. H., Abu Hassan, M. A., Mohd Din, M. F. (2013). An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev., 20, 378–384. DOI: 10.1016/j.rser.2012.11.050.
  • [10] Sarptaş, H. (2016). Assessment of landfill gas (LFG) energy potential based on estimates of LFG models. DEU Muhendislik Fak. Fen ve Muhendislik, 18(54), 491–501. DOI: 10.21205/deufmd.2016185416.
  • [11] USEPA, (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, US Environmental Protection Agency, Office of Research and Development, Washington, DC 20460. https://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf
  • [12] Kalantarifard, A., Yang, G. S. (2012). Estimation of Methane Production by LandGEM Simulation Model from Tanjung Langsat Municipal Solid Waste Landfill, Malaysia. Maejo Int. J. Sci. Technol., 1(9), 481-487.
  • [13] Cakir, A. K., Gunerhan, H., Hepbasli, A. (2016). A comparative study on estimating the landfill gas potential: Modeling and analysis. Energy Sources Part Recovery Util. Environ. Eff., 38, 2478–2486. DOI: 10.1080/15567036.2015.1039670.
  • [14] Hosseini, S. S., Yaghmaeian, K., Yousefi, N., Mahvi, A. H. (2018). Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model. Glob. J. Environ. Sci. Manag., 4(4), 493-506. DOI: 10.22034/gjesm.2018.04.009.
  • [15] Fallahizadeh, S., Rahmatinia, M., Mohammadi, Z., Vaezzadeh, M., Tajamiri, A., Soleimani, H. (2019). Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398. DOI: 10.1016/j.mex.2019.02.013.
  • [16] TSI, (2019). Turkish Statistical Institute [online] http://www.turkstat.gov.tr
  • [17] Gökçek, M. (2018). Methodology for a techno-economic evaluation of electricity production and GHG emissions estimation in landfill sites. Int J Glob. Warm., 16, 416–434. DOI: 10.1504/IJGW.2018.095998.
  • [18] Abdulvahitoğlu, A., Yılmaz, İ. H. (2018). Projected potential of Landfill gas in Çukurova region. Int. Adv. Res. Eng. J., 2(2), 117-123.
  • [19] Scharff, H., Jacobs, J. (2006). Applying guidance for methane emission estimation for landfills. Waste Manag., 26, 417–429. DOI: 10.1016/j.wasman.2005.11.015.
  • [20] Basak, N.N., (2003). Environmental engineering. New Delhi, Tata McGraw-Hill Education, ISBN: 0070494630, xvii, 295 p.
  • [21] Punmia, Dr.B.C.; Jain, A.Kr.; Jain, Arun Kr., (1998). Waste Water Engineering, Firewall Media, Published by Laxmi Publications (P) Ltd., ISBN 10: 8131805964 / ISBN 13: 9788131805961, p 660.
  • [22] Park, J. K., Chong, Y. G., Tameda, K., Lee, N. H. (2018). Methods for determining the methane generation potential and methane generation rate constant for the FOD model: A review. Waste Manag. Res., 36, 200–220. DOI: 10.1177/0734242X17753532.
  • [23] Garg, A.; Achari, G.; C Joshi, R. (2006). A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Manage. Res., 24(4), 363-375. DOI: 10.1177/0734242X06065189.
  • [24] TSMS, (2019). Turkish State Meteorological Service, TSMS [online] https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=SIVAS
  • [25] IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories: Intergovernmental Panel on Climate Change. Vol. 5. Waste. Japan: IGES. https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf
  • [26] Mambeli Barros, R., Tiago Filho, G. L., da Silva, T. R. (2014). The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150–164. DOI: 10.1016/j.enpol.2013.10.028.
  • [27] Sadeghi, S., Shahmoradi, B., Maleki, A. (2015). Estimating Methane Gas Generation Rate from Sanandaj City Landfill Using LANDGEM Software. Res. J. Environ. Sci., 9, 280–288. DOI: 10.3923/rjes.2015.280.288.
  • [28] Sil, A., Kumar, S., Wong, J. W. C. (2014). Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills. Bioresour. Technol., 168, 97–99. DOI: 10.1016/j.biortech.2014.03.035.
  • [29] Wakadikar, K. (2013). Influence of Sewage sludge and leachate on biochemical methane potential of waste biomass. J. Bioremediation Biodegrad., 4(5), 1-8. DOI: 10.4172/2155-6199.S8-002.
  • [30] Lee, J. H., Trimm, D. L. (1995). Catalytic combustion of methane. Fuel Process. Technol., 42(2-3), 339-359. DOI: 10.1016/0378-3820(94)00091-7.
  • [31] Amini, H.R., (2011). Landfill gas to energy: Incentives and benefits. PhD thesis, University of Central Floridap, Orlando, Florida. https://stars.library.ucf.edu/etd/1894/
  • [32] Jenbacher, (2020). Jenbacher Gas Engines Technical Specification, GE Jenbacher GmbH & CoOHG A-6200 Jenbach, Austria [online] http://www.cogeneration.com.ua/img/zstored/J420V21_en.pdf
  • [33] Surroop, D., Mohee, R. (2011). Power generatıon from landfıll gas. 2nd International Conference on Environmental Engineering and Applications IPCBEE, 17, 237-241, IACSIT Press, Singapore.

A STUDY ON ESTIMATING OF THE LANDFILL GAS POTENTIAL FROM SOLID WASTE STORAGE AREA IN SIVAS, TURKEY

Year 2020, Volume: 3 Issue: 2, 63 - 76, 24.08.2020

Abstract

The objective of this study was to investigate the amount of landfill gas obtained from the domestic solid waste stored regularly at the Sivas city solid waste landfill site and its usability for electricity generation. In this research, the actual data acquired from field studies were utilized for the calculation of the parameters. The total landfill gas, methane, and carbon dioxide emission amounts generated at the urban solid waste landfill site in Sivas city were determined by employing the LandGEM model. In the study, electricity generation via methane harnessing at the landfill site located in Sivas city, Turkey, was examined. The results obtained by examining the current situation of electricity generation from landfill gas power plant located in Sivas province were compared with the electricity generation capacities calculated according to the LandGEM estimation model version 3.02. The L0 value calculated for the Sivas landfill was 116.7 m3/Mg. The maximum quantities of total gas and methane emissions from the Sivas sanitary landfill were 7.976E+06 m3/year and 4.068E+06 m3/year, respectively. The outcomes of the LandGEM model as a mathematical model showed that the total gas and methane production rates in the first five years of landfilling were considerable. The constituents of the solid waste stream affected the gas emission rate at highest. The highest amount of energy to be generated was calculated to be 2947 kWh in 2030. The operational life of the Sivas Landfill Gas Power Plant will nearly end in an economic sense after 2060. It was observed that the actual data obtained from the power plant and the estimated data calculated using the LandGEM model were close to each other and the model made accurate predictions. It is possible to use the method and results of the current study to design and execute of methane gas collection systems and control the emission of greenhouse gases for landfills.

References

  • [1] IEA, (2017). CO2 Emissions from Fuel Combustion 2017. International Energy Agency. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019
  • [2] Can, A. (2020). The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. J. Clean. Prod., 243, 118501, DOI: 10.1016/j.jclepro.2019.118501.
  • [3] Ahmed, S. I., Johari, A., Hashim, H., Mat, R., Lim, J. S., Ngadi, N., Ali, A. (2015). Optimal landfill gas utilization for renewable energy production. Environ. Prog. Sustain. Energy, 34, 289–296, DOI: 10.1002/ep.11964.
  • [4] Li, S., Yoo, H. K., Macauley, M., Palmer, K., Shih, J.-S. (2015). Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Econ., 49, 687–697. DOI: 10.1016/j.eneco.2015.03.022.
  • [5] Singh, C. K., Kumar, A., Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci. Rep., 8, 2913. DOI: 10.1038/s41598-018-21326-9.
  • [6] Mambeli Barros, R., Tiago Filho, G. L., da Silva, T. R. (2014). The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150–164. DOI: 10.1016/j.enpol.2013.10.028.
  • [7] Johari, A., Ahmed, S. I., Hashim, H., Alkali, H., Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev., 16, 2907–2912. DOI: 10.1016/j.rser.2012.02.005.
  • [8] Tercan, S. H., Cabalar, A. F., Yaman, G. (2015). Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey. J. Air Waste Manag. Assoc., 65, 912–918. DOI: 10.1080/10962247.2015.1036178.
  • [9] Noor, Z. Z., Yusuf, R. O., Abba, A. H., Abu Hassan, M. A., Mohd Din, M. F. (2013). An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev., 20, 378–384. DOI: 10.1016/j.rser.2012.11.050.
  • [10] Sarptaş, H. (2016). Assessment of landfill gas (LFG) energy potential based on estimates of LFG models. DEU Muhendislik Fak. Fen ve Muhendislik, 18(54), 491–501. DOI: 10.21205/deufmd.2016185416.
  • [11] USEPA, (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, US Environmental Protection Agency, Office of Research and Development, Washington, DC 20460. https://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf
  • [12] Kalantarifard, A., Yang, G. S. (2012). Estimation of Methane Production by LandGEM Simulation Model from Tanjung Langsat Municipal Solid Waste Landfill, Malaysia. Maejo Int. J. Sci. Technol., 1(9), 481-487.
  • [13] Cakir, A. K., Gunerhan, H., Hepbasli, A. (2016). A comparative study on estimating the landfill gas potential: Modeling and analysis. Energy Sources Part Recovery Util. Environ. Eff., 38, 2478–2486. DOI: 10.1080/15567036.2015.1039670.
  • [14] Hosseini, S. S., Yaghmaeian, K., Yousefi, N., Mahvi, A. H. (2018). Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model. Glob. J. Environ. Sci. Manag., 4(4), 493-506. DOI: 10.22034/gjesm.2018.04.009.
  • [15] Fallahizadeh, S., Rahmatinia, M., Mohammadi, Z., Vaezzadeh, M., Tajamiri, A., Soleimani, H. (2019). Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398. DOI: 10.1016/j.mex.2019.02.013.
  • [16] TSI, (2019). Turkish Statistical Institute [online] http://www.turkstat.gov.tr
  • [17] Gökçek, M. (2018). Methodology for a techno-economic evaluation of electricity production and GHG emissions estimation in landfill sites. Int J Glob. Warm., 16, 416–434. DOI: 10.1504/IJGW.2018.095998.
  • [18] Abdulvahitoğlu, A., Yılmaz, İ. H. (2018). Projected potential of Landfill gas in Çukurova region. Int. Adv. Res. Eng. J., 2(2), 117-123.
  • [19] Scharff, H., Jacobs, J. (2006). Applying guidance for methane emission estimation for landfills. Waste Manag., 26, 417–429. DOI: 10.1016/j.wasman.2005.11.015.
  • [20] Basak, N.N., (2003). Environmental engineering. New Delhi, Tata McGraw-Hill Education, ISBN: 0070494630, xvii, 295 p.
  • [21] Punmia, Dr.B.C.; Jain, A.Kr.; Jain, Arun Kr., (1998). Waste Water Engineering, Firewall Media, Published by Laxmi Publications (P) Ltd., ISBN 10: 8131805964 / ISBN 13: 9788131805961, p 660.
  • [22] Park, J. K., Chong, Y. G., Tameda, K., Lee, N. H. (2018). Methods for determining the methane generation potential and methane generation rate constant for the FOD model: A review. Waste Manag. Res., 36, 200–220. DOI: 10.1177/0734242X17753532.
  • [23] Garg, A.; Achari, G.; C Joshi, R. (2006). A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Manage. Res., 24(4), 363-375. DOI: 10.1177/0734242X06065189.
  • [24] TSMS, (2019). Turkish State Meteorological Service, TSMS [online] https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=SIVAS
  • [25] IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories: Intergovernmental Panel on Climate Change. Vol. 5. Waste. Japan: IGES. https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf
  • [26] Mambeli Barros, R., Tiago Filho, G. L., da Silva, T. R. (2014). The electric energy potential of landfill biogas in Brazil. Energy Policy, 65, 150–164. DOI: 10.1016/j.enpol.2013.10.028.
  • [27] Sadeghi, S., Shahmoradi, B., Maleki, A. (2015). Estimating Methane Gas Generation Rate from Sanandaj City Landfill Using LANDGEM Software. Res. J. Environ. Sci., 9, 280–288. DOI: 10.3923/rjes.2015.280.288.
  • [28] Sil, A., Kumar, S., Wong, J. W. C. (2014). Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills. Bioresour. Technol., 168, 97–99. DOI: 10.1016/j.biortech.2014.03.035.
  • [29] Wakadikar, K. (2013). Influence of Sewage sludge and leachate on biochemical methane potential of waste biomass. J. Bioremediation Biodegrad., 4(5), 1-8. DOI: 10.4172/2155-6199.S8-002.
  • [30] Lee, J. H., Trimm, D. L. (1995). Catalytic combustion of methane. Fuel Process. Technol., 42(2-3), 339-359. DOI: 10.1016/0378-3820(94)00091-7.
  • [31] Amini, H.R., (2011). Landfill gas to energy: Incentives and benefits. PhD thesis, University of Central Floridap, Orlando, Florida. https://stars.library.ucf.edu/etd/1894/
  • [32] Jenbacher, (2020). Jenbacher Gas Engines Technical Specification, GE Jenbacher GmbH & CoOHG A-6200 Jenbach, Austria [online] http://www.cogeneration.com.ua/img/zstored/J420V21_en.pdf
  • [33] Surroop, D., Mohee, R. (2011). Power generatıon from landfıll gas. 2nd International Conference on Environmental Engineering and Applications IPCBEE, 17, 237-241, IACSIT Press, Singapore.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Original Research Articles
Authors

İlknur Şentürk 0000-0002-8217-2281

Başak Yıldırım This is me 0000-0002-1968-8533

Publication Date August 24, 2020
Acceptance Date August 20, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Şentürk, İ., & Yıldırım, B. (2020). A STUDY ON ESTIMATING OF THE LANDFILL GAS POTENTIAL FROM SOLID WASTE STORAGE AREA IN SIVAS, TURKEY. Scientific Journal of Mehmet Akif Ersoy University, 3(2), 63-76.