Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 40 - 49, 31.08.2021

Abstract

References

  • [1] Jacobs, G. 1981.Comparative color. In Vision, Academic Press New York.
  • [2] Mollon, J. D. 1989. tho'she kneel'd in that place where they grew. . . " the uses and origins of primate color vision. Journal of Experimental Biology 146, pp.21-38.
  • [3] Hutchings, J. B. (1998).Color in plants, animals and man. Color for Science, Art and Technology, pp. 221-246.
  • [4] Goethe W. (1967). Theory of Colours. London: Frank Cass & Co
  • [5] Goldstein, K. (1942). Some experimental observations concerning the influence of colors on the function of the organism. Occupational Therapy
  • [6] Nakshian, J. S. (1964). The effects of red and green surroundings on behavior. The Journal of General Psychology 70, pp.143-161. doi:10.1080/00221309.1964.9920584
  • [7] Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: A critical overview. In Categorical perception: The groundwork of cognition, Cambridge University Press, pp.1-52.
  • [8] James, W. & Domingos, W. R. (1953). The effect of color shock on motor performance and tremor. The Journal of general psychology 48, pp.187-193. doi:10.1080/00221309.1953.9920190
  • [9] Soldat, A. S., Sinclair, R. C. & Mark, M. M. (1997). Color as an environmental processing cue: External affective cues can directly affect processing strategy without affecting mood. Social cognition 15, pp.55-71. doi:10.1521/soco.1997.15.1.55
  • [10] Hill, R. A. & Barton, R. A. (2005). Psychology: Red enhances human performance in contests. Nature 435, pp. 293-293 . doi:10.1038/435293a
  • [11] Gilliam, J. E. & Unruh, D. (1988). The effects of baker-miller pink on biological, physical and cognitive behaviors. Journal of Orthomolecular Medicine 3, pp.202-206.
  • [12] Pellegrini, R. J., Schauss, A. G., Kerr, T. & You, B. K. A. (1981). Grip strength and exposure to hue differences in visual stimuli: Is postural status a factor? Bulletin of the Psychonomic Society 17, pp.27-28. doi:10.3758/BF03333657
  • [13] Profusek, P. . J. & Rainey, D. W. (1987). Effects of baker-miller pink and red on state anxiety, grip strength, and motor precision. Perceptual and motor skills 65, pp.941-942. doi:10.2466/pms.1987.65.3.941
  • [14] Healey M, Uller T, Olsson M. (2007). Seeing red: morph-specific contest success, and survival rates, in a colour-polymorphic agamid lizard. Animal Behaviour 74:337–341, doi: 10.1016/j.anbehav.2006.09.017
  • [15] Pryke, S. R. (2009). Is red an innate or learned signal of aggression and intimidation? Animal Behaviour 78, pp.393-398. doi:10.1016/j.anbehav.2009.05.013
  • [16] Frank, M. G. & Gilovich, T. (1988). The dark side of self-and social perception: Black uniforms and aggression in professional sports. Journal of personality and social psychology 54, pp.74. doi:10.1037/0022-3514.54.1.74
  • [17] Barton, R. A. & Hill, R. A. (2005). Seeing red? putting sportswear in context (reply). Nature 437, pp.E10-E11.
  • [18] Feltman, R. & Elliot, A. J. (2011). The influence of red on perceptions of relative dominance and threat in a competitive context. Journal of Sport and Exercise Psychology 33, pp.308-314. doi:10.1123/jsep.33.2.308
  • [19] Ten Velden, F. S., Baas, M., Shalvi, S., Preenen, P. T. & De Dreu, C. K. (2012). In competitive interaction displays of red increase actors' competitive approach and perceivers' withdrawal. Journal of Experimental Social Psychology 48, pp.1205-1208. doi: 10.1016/j.jesp.2012.04.004
  • [20] Little, A. C. & Hill, R. A. (2007). Attribution to red suggests special role in dominance signaling. Journal of evolutionary psychology 5, , pp. 161-168. doi:10.1556/JEP.2007.1008
  • [21] Dreiskaemper, D., Strauss, B., Hagemann, N. & Büsch, D. (2013). Influence of red jersey color on physical parameters in combat sports. Journal of Sport and Exercise Psychology 35, pp.44-49. doi: 10.1123/jsep.35.1.44
  • [22] Farrelly, D., Slater, R., Elliott, H. R., Walden, H. R. & Wetherell, M. A. (2013). Competitors who choose to be red have higher testosterone levels. Psychological science 24, pp. 2122-2124. doi:10.1177/0956797613482945
  • [23] Hackney, A. (2006). Testosterone and human performance: influence of the color red. European journal of applied physiology 96, pp. 330-333. doi: 10.1007/s00421-005-0059-7
  • [24] Fetterman AK, G. R. E. A., Robinson MD. (2011). Anger as seeing red: perceptual sources of evidence. Social Psychological and Personality Science, pp.311-316. doi: 10.1177/1948550610390051
  • [25] Fetterman, M. D. R., Adam K. & Meier., B. P. (2012). Anger as \seeing red": evidence for a perceptual association. Cognition & emotion, pp.1445-1458. doi:10.1080/02699931.2012.673477.
  • [26] Cacioppo, John T., Gardner, W. L, & Berntson, G. G. (1999). The affect system has parallel and integrative processing components: Form follows function. Journal of personality and Social Psychology, pp.839-855 . doi:10.1037/0022- 3514.76.5.839
  • [27] Pryke, S. R., Andersson, S., Lawes, M. J. & Piper, S. E. (2002). Carotenoid status signaling in captive and wild red-collared widowbirds: independent effects of badge size and color. Behavioral Ecology 13, pp.622-631.doi:10.1093/beheco/13.5.622
  • [28] Setchell, J. M. & Jean Wickings, E. (2005). Dominance, status signals and coloration in male mandrills (mandrillus sphinx). Ethology 111, pp.25-50. doi:10.1111/j.1439-0310.2004.01054.x
  • [29] Goldsmith, T. H. and Butler, B. K. (2003). The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus. Journal of Comparative Physiology A 189, 135–142. doi:10.1007/s00359-002-0385-8
  • [30] Goldsmith, T. H. & Butler, B. K. (2005). Color vision of the budgerigar (melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination. Journal of Comparative Physiology A 191, pp.933-951.doi:10.1007/s00359- 005-0024-2
  • [31] Kelber, A., Vorobyev, M., and Osorio, D. (2003). Animal colour vision: behavioural tests and physiological concepts. Biological Reviews. 78, 81–118.doi:10.1017/S1464793102005985
  • [32] Bennett, A. T., Cuthill, I. C. & Norris, K. (1994). Sexual selection and the mismeasure of color. The American Naturalist 144, pp. 848-860. doi:10.1086/285711
  • [33] Grant, K. A. (1966). A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. The American Naturalist 100,pp.85-97. doi:10.1086/282403
  • [34] Roper, T. (1990). Responses of domestic chicks to artificially colored insect prey: effects of previous experience and background colour. Animal Behaviour 39, pp.466-473. doi:10.1016/S0003-3472(05)80410-5
  • [35] Lindström, L., Rowe, C. & Guilford, T. (2001). Pyrazine odour biases food selection in avian predators against conspicuously coloured prey. Proceedings of the Royal Society of London, Series B 268, pp.357-361. doi:10.1098/rspb.2000.1344
  • [36] Hesham, M.H., El-Shereen, A.H., Enas, S.N., 2018. Impact of different light colors in behavior, welfare parameters and growth performance of fayoumi broiler chickens strain. Journal of the hellenic veterinary medical society 69, 951-958. doi:10.12681/jhvms.18017
  • [37] Çapar Akyüz, H., & Onbaşilar, E. E. (2018). Light wavelength on different poultry species. World's Poultry Science Journal, 74(1), 79-88. doi: 10.1017/S0043933917001076
  • [38] Huth, J. C., & Archer, G. S. (2015). Comparison of two LED light bulbs to a dimmable CFL and their effects on broiler chicken growth, stress, and fear. Poultry science, 94(9), 2027-2036. doi: 10.3382/ps/pev215
  • [39] Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in retinal and eye research, 20(5), 675-703. doi:10.1016/S1350-9462(01)00009-X
  • [40] Ebrey, T., & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in retinal and eye research, 20(1), 49-94. doi:10.1016/s1350-9462(00)00014-8
  • [41] Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in retinal and eye research 19, pp.385-419. doi:10.1016/S1350-9462(00)00002-1
  • [42] Ding, D., Cooper, R. A., Pasquina, P. F. & Fici-Pasquina, L. (2011). Sensor technology for smart homes. Maturitas 69, 131-136. doi: 10.1016/j.maturitas.2011.03.016
  • [43] Rozenboim, I. et al. The effect of a green and blue monochromatic light combination on broiler growth and development. Poultry science 83, 2004, pp.842-845. doi:10.1093/ps/83.5.842
  • [44] Wabeck, C. & Skoglund, W. (1974). Influence of radiant energy from fluorescent light sources on growth, mortality, and feed conversion of broilers. Poultry science 53, 2055-2059. doi:10.3382/ps.0532055
  • [45] Healey M, Uller T, Olsson M. 2007. Seeing red: morph-specific contest success, and survival rates, in a colour-polymorphic agamid lizard. Animal Behaviour 74:337–341, doi: 10.1016/j.anbehav.2006.09.017
  • [46] Shafey, T. & Al-Mohsen, T. Embryonic growth, hatching time and hatchability performance of meat breeder eggs incubated under continuous green light. Asian-Australasian Journal of Animal Sciences 15, 2002, 1702-1707. doi: 10.5713/ajas.2002.1702
  • [47] Rozenboim, I., Huisinga, R., Halevy, O. & El Halawani, M. 2003. Effect of embryonic photostimulation on the posthatch growth of turkey poults. Poultry science 82, pp.1181-1187. doi:10.1093/ps/82.7.1181
  • [48] Zhang, L. et al. (2012). Effect of monochromatic light stimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breast muscle in male broilers. Poultry science 91, 1026-1031. doi:10.3382/ps.2011-01899
  • [49] Hassan, H. A., El-Nesr, S. S., Osman, A. M. R., & Arram, G. A. (2013). Ultrastructure of eggshell, egg weight loss and hatching traits of Japanese Quail varying in eggshell color and pattern using image analysis. Egyptian Poultry Science Journal, 34, 1-17. doi:10.21608/epsj.2014.5303
  • [50] Pyrzak, R., Snapir, N., Goodman, G. & Perek, M. (1987). The effect of light wavelength on the production and quality of eggs of the domestic hen. Theriogenology 28, 947-960. doi: 10.1016/0093-691X(87)90045-8
  • [51] Er, D., Wang, Z., Cao, J. & Chen, Y. (2007). Effect of monochromatic light on the egg quality of laying hens. Journal of Applied Poultry Research 16, 605-612. doi: 10.3382/japr.2006-00096
  • [52] Rozenboim, I., El Halawani, M., Kashash, Y., Piestun, Y. & Halevy, O. (2013). The effect of monochromatic photo stimulation on growth and development of broiler birds. General and comparative endocrinology 190, 214-219. doi:10.1016/j.ygcen.2013.06.027
  • [53] Rozenboim, I., Biran, I., Uni, Z., Robinzon, B. & Halevy, O. (1999). The effect of monochromatic light on broiler growth and development. Poultry science 78, pp.135-138. doi:10.1093/ps/78.1.135
  • [54] Sultana, S., Hassan, M. R., Choe, H. S., & Ryu, K. S. (2013). The effect of monochromatic and mixed LED light colour on the behaviour and fear responses of broiler chicken. Avian Biology Research, 6(3), 207-214. doi:10.3184/175815513X13739879772128
  • [55] Sultana, S., Hassan, M. R., Kim, B. S., & Ryu, K. S. (2020). Effect of various monochromatic light emitting diodes colour on the behaviour and welfare of broiler chickens. Canadian Journal of Animal Science. doi:10.1139/CJAS-2018-0242
  • [56] Solangi, A. H., Rind, M. I. & Solangi, A. A. (2004). Influence of lighting on production and agonistic behavior of broiler. Journal of Animal and Veterinary Advances.
  • [57] Arja, S., Turunen, J. & Tanttu, J. T., 2007, Wavelets in Recognition of Bird Sounds, EURASIP Journal on Advances in Signal Processing, 1-9. doi: 10.1155/2007/51806
  • [58] Vundavalli, S. K. & Danthuluri, S. R. S. V. (2016). Bird chirps annotation using time-frequency domain analysis.
  • [59] Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications, Pearson Education India.
  • [60] Chowdhury, R. H., Reaz, M. B. I, Ali, M. A. B.M, et al. (2013). Surface electromyography signal processing and classification techniques. Sensors 13, pp.12431-12466. doi: 10.3390/s130912431

Interpretation of the relationship between the effects of different colors wavelength light application and sound frequency in japanese quails by spectral analysis

Year 2021, Volume: 4 Issue: 2, 40 - 49, 31.08.2021

Abstract

In this study, taking into account the responses of living things to the wavelength of light; Among the poultry species, which are more sensitive to green and red light wavelengths than humans, Japanese quails were used as model animals. In the study, the effects of red and green light wavelengths on gender and the responses of model animals of the same sex were examined. In the study, in the light application, the sound signals were taken in a specially isolated insulated environment. The recordings were analysed in frequency and time period using spectral analysis methods in the Matlab program. The maximum, minimum, average value, variance, dynamic range (Hz), peak frequency and autocorrelation time (S) values of the signal were found. These values, multiple comparison tests of male, female and male-female groups were performed in the study. While there were significant differences between the groups in the study; the red light application was estimated to be close to each other between the minimum and maximum values in the 1st and 7th weeks, variance, peak frequency and autocorrelation time (S) values. The reason for this is that poultry is more sensitive to green and red light wavelengths. It is an indication of the adapted adaptation for red light application (~ 625-740 nm, ~ 480-405 THz). In addition, in the control and green light applied groups, the data give statistically significant results; it is an indication that the wavelength of light has an effect on the frequency of sound. According to the results of the multiple comparison tests, a statistically significant difference was found between the groups (P = 0.05). Since there is no study on this subject, it is aimed to be a source of literature for other studies and to be the subject of scientific studies.

References

  • [1] Jacobs, G. 1981.Comparative color. In Vision, Academic Press New York.
  • [2] Mollon, J. D. 1989. tho'she kneel'd in that place where they grew. . . " the uses and origins of primate color vision. Journal of Experimental Biology 146, pp.21-38.
  • [3] Hutchings, J. B. (1998).Color in plants, animals and man. Color for Science, Art and Technology, pp. 221-246.
  • [4] Goethe W. (1967). Theory of Colours. London: Frank Cass & Co
  • [5] Goldstein, K. (1942). Some experimental observations concerning the influence of colors on the function of the organism. Occupational Therapy
  • [6] Nakshian, J. S. (1964). The effects of red and green surroundings on behavior. The Journal of General Psychology 70, pp.143-161. doi:10.1080/00221309.1964.9920584
  • [7] Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: A critical overview. In Categorical perception: The groundwork of cognition, Cambridge University Press, pp.1-52.
  • [8] James, W. & Domingos, W. R. (1953). The effect of color shock on motor performance and tremor. The Journal of general psychology 48, pp.187-193. doi:10.1080/00221309.1953.9920190
  • [9] Soldat, A. S., Sinclair, R. C. & Mark, M. M. (1997). Color as an environmental processing cue: External affective cues can directly affect processing strategy without affecting mood. Social cognition 15, pp.55-71. doi:10.1521/soco.1997.15.1.55
  • [10] Hill, R. A. & Barton, R. A. (2005). Psychology: Red enhances human performance in contests. Nature 435, pp. 293-293 . doi:10.1038/435293a
  • [11] Gilliam, J. E. & Unruh, D. (1988). The effects of baker-miller pink on biological, physical and cognitive behaviors. Journal of Orthomolecular Medicine 3, pp.202-206.
  • [12] Pellegrini, R. J., Schauss, A. G., Kerr, T. & You, B. K. A. (1981). Grip strength and exposure to hue differences in visual stimuli: Is postural status a factor? Bulletin of the Psychonomic Society 17, pp.27-28. doi:10.3758/BF03333657
  • [13] Profusek, P. . J. & Rainey, D. W. (1987). Effects of baker-miller pink and red on state anxiety, grip strength, and motor precision. Perceptual and motor skills 65, pp.941-942. doi:10.2466/pms.1987.65.3.941
  • [14] Healey M, Uller T, Olsson M. (2007). Seeing red: morph-specific contest success, and survival rates, in a colour-polymorphic agamid lizard. Animal Behaviour 74:337–341, doi: 10.1016/j.anbehav.2006.09.017
  • [15] Pryke, S. R. (2009). Is red an innate or learned signal of aggression and intimidation? Animal Behaviour 78, pp.393-398. doi:10.1016/j.anbehav.2009.05.013
  • [16] Frank, M. G. & Gilovich, T. (1988). The dark side of self-and social perception: Black uniforms and aggression in professional sports. Journal of personality and social psychology 54, pp.74. doi:10.1037/0022-3514.54.1.74
  • [17] Barton, R. A. & Hill, R. A. (2005). Seeing red? putting sportswear in context (reply). Nature 437, pp.E10-E11.
  • [18] Feltman, R. & Elliot, A. J. (2011). The influence of red on perceptions of relative dominance and threat in a competitive context. Journal of Sport and Exercise Psychology 33, pp.308-314. doi:10.1123/jsep.33.2.308
  • [19] Ten Velden, F. S., Baas, M., Shalvi, S., Preenen, P. T. & De Dreu, C. K. (2012). In competitive interaction displays of red increase actors' competitive approach and perceivers' withdrawal. Journal of Experimental Social Psychology 48, pp.1205-1208. doi: 10.1016/j.jesp.2012.04.004
  • [20] Little, A. C. & Hill, R. A. (2007). Attribution to red suggests special role in dominance signaling. Journal of evolutionary psychology 5, , pp. 161-168. doi:10.1556/JEP.2007.1008
  • [21] Dreiskaemper, D., Strauss, B., Hagemann, N. & Büsch, D. (2013). Influence of red jersey color on physical parameters in combat sports. Journal of Sport and Exercise Psychology 35, pp.44-49. doi: 10.1123/jsep.35.1.44
  • [22] Farrelly, D., Slater, R., Elliott, H. R., Walden, H. R. & Wetherell, M. A. (2013). Competitors who choose to be red have higher testosterone levels. Psychological science 24, pp. 2122-2124. doi:10.1177/0956797613482945
  • [23] Hackney, A. (2006). Testosterone and human performance: influence of the color red. European journal of applied physiology 96, pp. 330-333. doi: 10.1007/s00421-005-0059-7
  • [24] Fetterman AK, G. R. E. A., Robinson MD. (2011). Anger as seeing red: perceptual sources of evidence. Social Psychological and Personality Science, pp.311-316. doi: 10.1177/1948550610390051
  • [25] Fetterman, M. D. R., Adam K. & Meier., B. P. (2012). Anger as \seeing red": evidence for a perceptual association. Cognition & emotion, pp.1445-1458. doi:10.1080/02699931.2012.673477.
  • [26] Cacioppo, John T., Gardner, W. L, & Berntson, G. G. (1999). The affect system has parallel and integrative processing components: Form follows function. Journal of personality and Social Psychology, pp.839-855 . doi:10.1037/0022- 3514.76.5.839
  • [27] Pryke, S. R., Andersson, S., Lawes, M. J. & Piper, S. E. (2002). Carotenoid status signaling in captive and wild red-collared widowbirds: independent effects of badge size and color. Behavioral Ecology 13, pp.622-631.doi:10.1093/beheco/13.5.622
  • [28] Setchell, J. M. & Jean Wickings, E. (2005). Dominance, status signals and coloration in male mandrills (mandrillus sphinx). Ethology 111, pp.25-50. doi:10.1111/j.1439-0310.2004.01054.x
  • [29] Goldsmith, T. H. and Butler, B. K. (2003). The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus. Journal of Comparative Physiology A 189, 135–142. doi:10.1007/s00359-002-0385-8
  • [30] Goldsmith, T. H. & Butler, B. K. (2005). Color vision of the budgerigar (melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination. Journal of Comparative Physiology A 191, pp.933-951.doi:10.1007/s00359- 005-0024-2
  • [31] Kelber, A., Vorobyev, M., and Osorio, D. (2003). Animal colour vision: behavioural tests and physiological concepts. Biological Reviews. 78, 81–118.doi:10.1017/S1464793102005985
  • [32] Bennett, A. T., Cuthill, I. C. & Norris, K. (1994). Sexual selection and the mismeasure of color. The American Naturalist 144, pp. 848-860. doi:10.1086/285711
  • [33] Grant, K. A. (1966). A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. The American Naturalist 100,pp.85-97. doi:10.1086/282403
  • [34] Roper, T. (1990). Responses of domestic chicks to artificially colored insect prey: effects of previous experience and background colour. Animal Behaviour 39, pp.466-473. doi:10.1016/S0003-3472(05)80410-5
  • [35] Lindström, L., Rowe, C. & Guilford, T. (2001). Pyrazine odour biases food selection in avian predators against conspicuously coloured prey. Proceedings of the Royal Society of London, Series B 268, pp.357-361. doi:10.1098/rspb.2000.1344
  • [36] Hesham, M.H., El-Shereen, A.H., Enas, S.N., 2018. Impact of different light colors in behavior, welfare parameters and growth performance of fayoumi broiler chickens strain. Journal of the hellenic veterinary medical society 69, 951-958. doi:10.12681/jhvms.18017
  • [37] Çapar Akyüz, H., & Onbaşilar, E. E. (2018). Light wavelength on different poultry species. World's Poultry Science Journal, 74(1), 79-88. doi: 10.1017/S0043933917001076
  • [38] Huth, J. C., & Archer, G. S. (2015). Comparison of two LED light bulbs to a dimmable CFL and their effects on broiler chicken growth, stress, and fear. Poultry science, 94(9), 2027-2036. doi: 10.3382/ps/pev215
  • [39] Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in retinal and eye research, 20(5), 675-703. doi:10.1016/S1350-9462(01)00009-X
  • [40] Ebrey, T., & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in retinal and eye research, 20(1), 49-94. doi:10.1016/s1350-9462(00)00014-8
  • [41] Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in retinal and eye research 19, pp.385-419. doi:10.1016/S1350-9462(00)00002-1
  • [42] Ding, D., Cooper, R. A., Pasquina, P. F. & Fici-Pasquina, L. (2011). Sensor technology for smart homes. Maturitas 69, 131-136. doi: 10.1016/j.maturitas.2011.03.016
  • [43] Rozenboim, I. et al. The effect of a green and blue monochromatic light combination on broiler growth and development. Poultry science 83, 2004, pp.842-845. doi:10.1093/ps/83.5.842
  • [44] Wabeck, C. & Skoglund, W. (1974). Influence of radiant energy from fluorescent light sources on growth, mortality, and feed conversion of broilers. Poultry science 53, 2055-2059. doi:10.3382/ps.0532055
  • [45] Healey M, Uller T, Olsson M. 2007. Seeing red: morph-specific contest success, and survival rates, in a colour-polymorphic agamid lizard. Animal Behaviour 74:337–341, doi: 10.1016/j.anbehav.2006.09.017
  • [46] Shafey, T. & Al-Mohsen, T. Embryonic growth, hatching time and hatchability performance of meat breeder eggs incubated under continuous green light. Asian-Australasian Journal of Animal Sciences 15, 2002, 1702-1707. doi: 10.5713/ajas.2002.1702
  • [47] Rozenboim, I., Huisinga, R., Halevy, O. & El Halawani, M. 2003. Effect of embryonic photostimulation on the posthatch growth of turkey poults. Poultry science 82, pp.1181-1187. doi:10.1093/ps/82.7.1181
  • [48] Zhang, L. et al. (2012). Effect of monochromatic light stimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breast muscle in male broilers. Poultry science 91, 1026-1031. doi:10.3382/ps.2011-01899
  • [49] Hassan, H. A., El-Nesr, S. S., Osman, A. M. R., & Arram, G. A. (2013). Ultrastructure of eggshell, egg weight loss and hatching traits of Japanese Quail varying in eggshell color and pattern using image analysis. Egyptian Poultry Science Journal, 34, 1-17. doi:10.21608/epsj.2014.5303
  • [50] Pyrzak, R., Snapir, N., Goodman, G. & Perek, M. (1987). The effect of light wavelength on the production and quality of eggs of the domestic hen. Theriogenology 28, 947-960. doi: 10.1016/0093-691X(87)90045-8
  • [51] Er, D., Wang, Z., Cao, J. & Chen, Y. (2007). Effect of monochromatic light on the egg quality of laying hens. Journal of Applied Poultry Research 16, 605-612. doi: 10.3382/japr.2006-00096
  • [52] Rozenboim, I., El Halawani, M., Kashash, Y., Piestun, Y. & Halevy, O. (2013). The effect of monochromatic photo stimulation on growth and development of broiler birds. General and comparative endocrinology 190, 214-219. doi:10.1016/j.ygcen.2013.06.027
  • [53] Rozenboim, I., Biran, I., Uni, Z., Robinzon, B. & Halevy, O. (1999). The effect of monochromatic light on broiler growth and development. Poultry science 78, pp.135-138. doi:10.1093/ps/78.1.135
  • [54] Sultana, S., Hassan, M. R., Choe, H. S., & Ryu, K. S. (2013). The effect of monochromatic and mixed LED light colour on the behaviour and fear responses of broiler chicken. Avian Biology Research, 6(3), 207-214. doi:10.3184/175815513X13739879772128
  • [55] Sultana, S., Hassan, M. R., Kim, B. S., & Ryu, K. S. (2020). Effect of various monochromatic light emitting diodes colour on the behaviour and welfare of broiler chickens. Canadian Journal of Animal Science. doi:10.1139/CJAS-2018-0242
  • [56] Solangi, A. H., Rind, M. I. & Solangi, A. A. (2004). Influence of lighting on production and agonistic behavior of broiler. Journal of Animal and Veterinary Advances.
  • [57] Arja, S., Turunen, J. & Tanttu, J. T., 2007, Wavelets in Recognition of Bird Sounds, EURASIP Journal on Advances in Signal Processing, 1-9. doi: 10.1155/2007/51806
  • [58] Vundavalli, S. K. & Danthuluri, S. R. S. V. (2016). Bird chirps annotation using time-frequency domain analysis.
  • [59] Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications, Pearson Education India.
  • [60] Chowdhury, R. H., Reaz, M. B. I, Ali, M. A. B.M, et al. (2013). Surface electromyography signal processing and classification techniques. Sensors 13, pp.12431-12466. doi: 10.3390/s130912431
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Original Research Articles
Authors

İnci Bilge 0000-0002-0194-2759

Emre Aydemir 0000-0002-2451-8248

Publication Date August 31, 2021
Acceptance Date August 29, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Bilge, İ., & Aydemir, E. (2021). Interpretation of the relationship between the effects of different colors wavelength light application and sound frequency in japanese quails by spectral analysis. Scientific Journal of Mehmet Akif Ersoy University, 4(2), 40-49.