Research Article
BibTex RIS Cite

Comparative Analysis of Förster Resonance Energy Transfer (FRET) in Spherical and Planar Geometries

Year 2025, Volume: 8 Issue: 1, 47 - 56, 30.06.2025
https://doi.org/10.70030/sjmakeu.1665692

Abstract

This research explores the influence of geometric configuration on Förster Resonance Energy Transfer (FRET) efficiency. Specifically, it compares spherical arrangements (relevant to structures like nanoparticles) with planar arrangements (found in systems like cell membranes). A key goal is to clarify the interplay between FRET efficiency, inter-molecular distances, and the characteristic Förster distance. By employing both mathematical models and visual representations, the study seeks to provide a detailed understanding of how FRET operates under these distinct geometric constraints. The findings are intended to be broadly applicable, offering valuable insights for the design and analysis of FRET-based experimental work across diverse scientific disciplines.

References

  • Clegg, R. M. (2009). Förster resonance energy transfer—FRET what is it, why do it, and how it's done. Laboratory techniques in biochemistry and molecular biology, 33, 1-57.
  • Kaur, A., Kaur, P., & Ahuja, S. (2020). Förster resonance energy transfer (FRET) and applications thereof. Analytical Methods, 12(46), 5532-5550.
  • Szabó, Á., Szöllősi, J., & Nagy, P. (2022). Principles of resonance energy transfer. Current protocols, 2(12), e625.
  • Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press.
  • Metz, S., & Marian, C. M. (2025). Computational Approach to Phosphor-Sensitized Fluorescence Based on Monomer Transition Densities. Journal of Chemical Theory and Computation, 21(5), 2569-2581.
  • Nüesch, M., Ivanović, M. T., Nettels, D., Best, R. B., & Schuler, B. (2025). Accuracy of distance distributions and dynamics from single-molecule FRET. Biophysical Journal.
  • Loidolt-Krüger, M. (2025). Perspective: fluorescence lifetime imaging and single-molecule spectroscopy for studying biological condensates. Methods in Microscopy, (0).
  • Berney, C., & Danuser, G. (2003). FRET or no FRET: a quantitative comparison. Biophysical journal, 84(6), 3992-4010.
  • Shrestha, D., Jenei, A., Nagy, P., Vereb, G., & Szöllősi, J. (2015). Understanding FRET as a research tool for cellular studies. International journal of molecular sciences, 16(4), 6718-6756.
  • Zhou, M., Zhang, K., Li, X., Ge, Y., Zhang, W., Lu, P., & Hao, X. (2024). Improved Exciton Diffusion through Modulating Förster Resonance Energy Transfer for Efficient Organic Solar Cells. Solar RRL, 8(13), 2400136.
  • Wong, K. F., Bagchi, B., & Rossky, P. J. (2004). Distance and orientation dependence of excitation transfer rates in conjugated systems: beyond the Förster theory. The Journal of Physical Chemistry A, 108(27), 5752-5763.
  • Patterson, G. H., Piston, D. W., & Barisas, B. G. (2000). Förster distances between green fluorescent protein pairs. Analytical biochemistry, 284(2), 438-440.
  • Fang, C., Huang, Y., & Zhao, Y. (2023). Review of FRET biosensing and its application in biomolecular detection. American journal of translational research, 15(2), 694.
  • Gopal, A. R., Joy, F., Dutta, V., Devasia, J., Dateer, R., & Nizam, A. (2024). Carbon dot-based fluorescence resonance energy transfer (FRET) systems for biomedical, sensing, and imaging applications. Particle & Particle Systems Characterization, 41(1), 2300072.
  • Liu, C. (2024, January). Application of FRET and TBET in bioimaging and biosensors. In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023) (Vol. 12924, pp. 346-353). SPIE.
  • Kaur, A., & Dhakal, S. (2020). Recent applications of FRET-based multiplexed techniques. TrAC Trends in Analytical Chemistry, 123, 115777.
  • Medintz, I. L., & Hildebrandt, N. (Eds.). (2013). FRET-Förster resonance energy transfer: from theory to applications. John Wiley & Sons.
  • Saini, S., Srinivas, G., & Bagchi, B. (2009). Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. The Journal of Physical Chemistry B, 113(7), 1817-1832.
  • Oliden-Sánchez, A., Sola-Llano, R., Pérez-Pariente, J., Gómez-Hortigüela, L., & Martínez-Martínez, V. (2024). Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Physical Chemistry Chemical Physics, 26(2), 1225-1233.
  • Grzedowski, A. J., Jun, D., Mahey, A., Zhou, G. C., Fernandez, R., & Bizzotto, D. (2024). Engineering DNA Nanocube SAM Scaffolds for FRET-Based Biosensing: Interfacial Characterization and Sensor Demonstration. Journal of the American Chemical Society, 146(46), 31560-31573.

Year 2025, Volume: 8 Issue: 1, 47 - 56, 30.06.2025
https://doi.org/10.70030/sjmakeu.1665692

Abstract

References

  • Clegg, R. M. (2009). Förster resonance energy transfer—FRET what is it, why do it, and how it's done. Laboratory techniques in biochemistry and molecular biology, 33, 1-57.
  • Kaur, A., Kaur, P., & Ahuja, S. (2020). Förster resonance energy transfer (FRET) and applications thereof. Analytical Methods, 12(46), 5532-5550.
  • Szabó, Á., Szöllősi, J., & Nagy, P. (2022). Principles of resonance energy transfer. Current protocols, 2(12), e625.
  • Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press.
  • Metz, S., & Marian, C. M. (2025). Computational Approach to Phosphor-Sensitized Fluorescence Based on Monomer Transition Densities. Journal of Chemical Theory and Computation, 21(5), 2569-2581.
  • Nüesch, M., Ivanović, M. T., Nettels, D., Best, R. B., & Schuler, B. (2025). Accuracy of distance distributions and dynamics from single-molecule FRET. Biophysical Journal.
  • Loidolt-Krüger, M. (2025). Perspective: fluorescence lifetime imaging and single-molecule spectroscopy for studying biological condensates. Methods in Microscopy, (0).
  • Berney, C., & Danuser, G. (2003). FRET or no FRET: a quantitative comparison. Biophysical journal, 84(6), 3992-4010.
  • Shrestha, D., Jenei, A., Nagy, P., Vereb, G., & Szöllősi, J. (2015). Understanding FRET as a research tool for cellular studies. International journal of molecular sciences, 16(4), 6718-6756.
  • Zhou, M., Zhang, K., Li, X., Ge, Y., Zhang, W., Lu, P., & Hao, X. (2024). Improved Exciton Diffusion through Modulating Förster Resonance Energy Transfer for Efficient Organic Solar Cells. Solar RRL, 8(13), 2400136.
  • Wong, K. F., Bagchi, B., & Rossky, P. J. (2004). Distance and orientation dependence of excitation transfer rates in conjugated systems: beyond the Förster theory. The Journal of Physical Chemistry A, 108(27), 5752-5763.
  • Patterson, G. H., Piston, D. W., & Barisas, B. G. (2000). Förster distances between green fluorescent protein pairs. Analytical biochemistry, 284(2), 438-440.
  • Fang, C., Huang, Y., & Zhao, Y. (2023). Review of FRET biosensing and its application in biomolecular detection. American journal of translational research, 15(2), 694.
  • Gopal, A. R., Joy, F., Dutta, V., Devasia, J., Dateer, R., & Nizam, A. (2024). Carbon dot-based fluorescence resonance energy transfer (FRET) systems for biomedical, sensing, and imaging applications. Particle & Particle Systems Characterization, 41(1), 2300072.
  • Liu, C. (2024, January). Application of FRET and TBET in bioimaging and biosensors. In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023) (Vol. 12924, pp. 346-353). SPIE.
  • Kaur, A., & Dhakal, S. (2020). Recent applications of FRET-based multiplexed techniques. TrAC Trends in Analytical Chemistry, 123, 115777.
  • Medintz, I. L., & Hildebrandt, N. (Eds.). (2013). FRET-Förster resonance energy transfer: from theory to applications. John Wiley & Sons.
  • Saini, S., Srinivas, G., & Bagchi, B. (2009). Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. The Journal of Physical Chemistry B, 113(7), 1817-1832.
  • Oliden-Sánchez, A., Sola-Llano, R., Pérez-Pariente, J., Gómez-Hortigüela, L., & Martínez-Martínez, V. (2024). Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Physical Chemistry Chemical Physics, 26(2), 1225-1233.
  • Grzedowski, A. J., Jun, D., Mahey, A., Zhou, G. C., Fernandez, R., & Bizzotto, D. (2024). Engineering DNA Nanocube SAM Scaffolds for FRET-Based Biosensing: Interfacial Characterization and Sensor Demonstration. Journal of the American Chemical Society, 146(46), 31560-31573.
There are 20 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Original Research Articles
Authors

Onur İnan 0000-0003-4573-7025

Early Pub Date May 23, 2025
Publication Date June 30, 2025
Submission Date March 26, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA İnan, O. (2025). Comparative Analysis of Förster Resonance Energy Transfer (FRET) in Spherical and Planar Geometries. Scientific Journal of Mehmet Akif Ersoy University, 8(1), 47-56. https://doi.org/10.70030/sjmakeu.1665692