Research Article
BibTex RIS Cite

Performance-Based Design and Design Process of Kinetic Facade Systems

Year 2023, Volume: 6 Issue: 2, 180 - 201, 31.12.2023
https://doi.org/10.51764/smutgd.1296435

Abstract

Kinetic façade systems, which increase the comfort of the occupants by interacting with the external environment and/or occupants interior space thanks to their adaptability function, and providing high daylight performance on the façade and energy efficiency throughout the life cycle of the building, offer efficient and effective solutions, as a sunshade shell. The optimum adaptability performance of the sunshade components that form the kinetic façade depends on the design and design process of these façades. In this context, in the design process where the morphological (physical-formal) structure of the kinetic facade is modeled and its kinetic transformation is designed, its functional properties are determined and performance analyzes have happened; The design approaches adopted, the design systems used and the design procedures created by the tools, methods, and techniques required by these systems gain importance. Within the scope of the study, it is aimed to reveal the relationship between the performance-based design of kinetic facade systems and the design process. For this purpose, comparative analysis and evaluation of the kinetic facade design samples were determined after the literature review has been done.In the conclusion section of the study, general determinations were made about performance-based optimum kinetic facade design and design process based on the findings, and the lack of studies on the design of these systems in the literature was mentioned and it was suggested that design methods and approaches in this field should be increased and developed.

References

  • Akipek, F. Ö., & İnceoğlu, N. (2007). Bilgisayar destekli tasarım ve üretim teknolojilerinin mimarlıktaki kullanımları. Megaron Yıldız Teknik Üniversitesi E-Dergisi, 2(4), 237-253.
  • Albag, O., Anishchenko, M., Grassi, G., & Paoletti, I. (2020). Adaptive skins: towards new material systems. Digital transformation of the design, construction and management processes of the built environment, 209-219.
  • Alkhatib, H., Lemarchand, P., Norton, B., & O'Sullivan, D. T. J. (2021) Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering, 185, 116331. https://doi.org/10.1016/j.applthermaleng.2020.116331
  • Alkhayyat, J. (2013). Design strategy for adaptive kinetic patterns: creating a generative design for dynamic solar shading systems. (M.a. Thesis. Manchester: University of Salford School Of Build Environment MSc Digital Architectural Design). Manchester, England, https://www.academia.edu/6978438/Design_strategy_for_adaptive_kinetic_patterns_creating_a_generative_design_for_dynamic_solar_shading_system
  • Alotaibi, F. (2015). The role of kinetic envelopes to improve energy performance in buildings. Journal of Architectural Engineering Technology, 4(3), 149-153. DOI:10.4172/2168-9717.1000149
  • Arida, S. (2004). Contextualizing generative design. (Doctoral dissertation. Massachusetts Institute of Technology). Cambridge, US, https://core.ac.uk/download/pdf/4385734.pdf
  • Barozzi, M., Lienhard, J., Zanelli, A., & Monticelli, C. (2016). The sustainability of adaptive envelopes: developments of kinetic architecture. Procedia Engineering, 155, 275-284 https://doi.org/10.1016/j.proeng.2016.08.029
  • Davis, D., Burry, J., & Burry, M. (2011, July). Untangling parametric schemata: enhancing collaboration through modular programming. Proceedings of the 14th İnternational Conference on Computer Aided Architectural Design, University of Liege, Liege, 55-68. https://www.researchgate.net/publication/228843549_Untangling_Parametric_Schemata_Enhancing_Collaboration_through_Modular_Programming
  • Elkhayat, Y. O. (2014). Interactive movement in kinetic architecture. JES. Journal of Engineering Sciences, 42(3), 816-845. DOI:10.21608/jesaun.2014.115027
  • Elmokadem, A., Ekram, M., Waseef, A., & Nashaat, B. (2018). Kinetic architecture: concepts, history and applications. International Journal of Science and Research (IJSR), 7(4): 750-758. DOI:10.21275/ART20181560
  • Figliola, A. (2023). Digital workflow for climate resilient building façade generation. Building Research & Information, 51(3), 257-278. https://doi.org/10.1080/09613218.2022.2121907
  • Formentini, M., & Lenci, S. (2018). An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors. Automation in Construction, 85, 220-231. https://doi.org/10.1016/j.autcon.2017.10.006
  • Fox, M. A., & Yeh, B. P. (1999 December). Intelligent kinetic systems in architecture. In Managing Interactions in Smart Environments: 1st International Workshop on Managing Interactions in Smart Environments (MANSE’99), Dublin, 91-103.
  • Güzer, C.A., Kahraman, İ., Kanan, N.Ö, Tombak, E., Kabakçı, O.K., Gül, K. (2016, Mayıs). Bütünleşik bina tasarımı yaklaşımı ile proje geliştirme süreci uygulama kılavuzu. Enerji ve Tabii Kaynaklar Bakanlığı Yenilenebilir Enerji Genel Müdürlüğü, Çankaya, Ankara. https://webdosya.csb.gov.tr/db/meslekihizmetler/ustmenu/ustmenu838.pdf
  • Haghighat, S., & Sadeh, H. (2023). Parametric design of an automated kinetic building façade using BIM: A case study perspective. Journal of Building Engineering, 73, 106800. https://doi.org/10.1016/j.jobe.2023.106800
  • Heidari Matin, N., & Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent buildings international, 14(1), 54-73. https://doi.org/10.1080/17508975.2019.1577213
  • Henríquez, D., Herrera, R. F., & Vielma, J. C. (2022). Method for designing prequalified connections using generative design. Buildings, 12(10): 1579. https://doi.org/10.3390/buildings12101579
  • Hosseini, S. M., Mohammadi, M., & Guerra-Santin, O. (2019). Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes. Building and Environment, 165, 106396. https://doi.org/10.1016/j.buildenv.2019.106396
  • Hosseini, S. M., Mohammadi, M., Schröder, T., & Guerra-Santin, O. (2020). Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position. Journal of Building Engineering, 31, 101404. https://doi.org/10.1016/j.jobe.2020.101404
  • Hosseini, S. M., Mohammadi, M., Schröder, T., & Guerra-Santin, O. (2021). Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort. Frontiers of Architectural Research, 10(4), 821-837. https://doi.org/10.1016/j.foar.2021.07.004
  • Khoo, C. K. (2013). Morphing architecture with responsive material systems (Doctoral dissertation, RMIT University). https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Morphing-architecture-with-responsive-material-systems/9921861599501341
  • Khidmat, R. P., Fukuda, H., Paramita, B., Qingsong, M., & Hariyadi, A. (2022). Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. Journal of Building Engineering, 51, 104241. https://doi.org/10.1016/j.jobe.2022.104241
  • Knippers, J., Scheible, F., Oppe, M., & Jungjohann, H. (2012 July). Bio-inspired kinetic gfrp-façade for the thematic pavilion of the expo 2012 in yeosu. International Symposium of Shell and Spatial Structures IASS 2012, 90(6), 341-347. Seoul, South Korea. https://www.researchgate.net/publication/311534824_Bio-inspired_Kinetic_GFRP-facade_for_the_Thematic_Pavilion_of_the_EXPO_2012_in_Yeosu
  • Kolarevic, B. (2003). Designing and manufacturing architecture in the digital age. (1st ed.) Taylor & Francis https://doi.org/10.4324/9780203634561
  • Le-Thanh, L., Le-Duc, T., Ngo-Minh, H., Nguyen, Q. H., & Nguyen-Xuan, H. (2021). Optimal design of an Origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency. Energy, 219, 119557. https://doi.org/10.1016/j.energy.2020.119557
  • Leach, N. (2009). Digital morphogenesis. Architectural Design, 79(1), 32-37. https://doi.org/10.1002/ad.80
  • Loonen, R. C., Favoino, F., Hensen, J. L., & Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205-223. https://doi.org/10.1080/19401493.2016.1152303
  • Ma, W., Wang, X., Wang, J., Xiang, X., & Sun, J. (2021). Generative design in building information modelling (BIM): approaches and requirements. Sensors, 21, 21(16), 5439. https://doi.org/10.3390/s21165439
  • Mahmoud, A. H. A., & Elghazi, Y. (2016). Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. Solar Energy, 126, 111-127. https://doi.org/10.1016/j.solener.2015.12.039
  • Mallasi, Z. (2018). Using parametric BIM integration for prototyping future responsive façades. Journal of Facade Design and Engineering, 6(1): 89-100. https://doi.org/10.7480/jfde.2018.1.1865
  • Megahed, N. A. (2017). Understanding kinetic architecture: typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2): 130-146. https://doi.org/10.1080/17452007.2016.1203676
  • Menges, A., & Ahlquist, S. (2011). Computational design thinking: computation design thinking. John Wiley & Sons.
  • Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., Willmann, A., & Schlueter, A. (2016). The adaptive solar facade: from concept to prototypes. Frontiers of Architectural Research, 5(2), 143-156. https://doi.org/10.1016/j.foar.2016.03.002
  • Oxman, R. (2006). Theory and design in the first digital age. Design Studies, 27(3): 229-265. doi:10.1016/j.destud.2005.11.002
  • Oxman, R., Gu, N. (2015 16-18 September). Theories and models of parametric design thinking. Proceedings of the 33rd eCAADe Conference. 2, 477-482, Vienna, Austria. DOI:10.52842/conf.ecaade.2015.2.477
  • Panya, D. S., Kim, T., & Choo, S. (2020). A methodology of interactive motion facades design through parametric strategies. Applied Sciences, 10(4), 1218. doi: https://doi.org/10.3390/app10041218
  • Radwan, G. A., & Osama, N. (2016). Biomimicry, an approach, for energy effecient building skin design. Procedia Environmental Sciences, 34, 178-189. https://doi.org/10.1016/j.proenv.2016.04.017
  • Ramzy, N., & Fayed, H. (2011). Kinetic systems in architecture: New approach for environmental control systems and context-sensitive buildings. Sustainable Cities and Society, 1(3): 170-177. https://doi.org/10.1016/j.scs.2011.07.004
  • Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50-69. https://doi.org/10.1016/j.cad.2014.02.010
  • Sadegh, S. O., Gasparri, E., Brambilla, A., & Globa, A. (2022). Kinetic facades: An evolutionary-based performance evaluation framework. Journal of Building Engineering, 53, 104408. https://doi.org/10.1016/j.jobe.2022.104408
  • Samir, H., Shahin, M. (2018). Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal, 58(1), 346-348. https://doi.org/10.1016/j.aej.2018.11.013
  • Sankaewthong, S., Horanont, T., Miyata, K., Karnjana, J., Busayarat, C., & Xie, H. (2022). Using a biomimicry approach in the design of a kinetic façade to regulate the amount of daylight entering a working space. Buildings, 12(12), 2089. https://doi.org/10.3390/buildings12122089
  • Schleicher, S., Lienhard, J, Poppinga, S., Speck, T., Knippers, J. (2015). A methodology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105-117 https://doi.org/10.1016/j.cad.2014.01.005
  • Seyrek, C. I., Widera, B., & Woźniczka, A. (2021). Sustainability-related parameters and decision support tools for kinetic green façades. Sustainability, 13(18): 10313. https://doi.org/10.3390/su131810313
  • Shen, Y. T., & Lu, P. W. (2016, March). The development of kinetic façade units with BIM-based active control system for the adaptive building energy performance service. International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 517-526. DOI:10.52842/conf.caadria.2016.517
  • Shen, Y. T., & Wu, T. Y. (2016 17-22 July). Sync-BIM: the interactive BIM-Based platform for controlling data-driven kinetic façade. HCI International 2016–Posters' Extended Abstracts: 18th International Conference, HCI International Proceedings Part II, 445-450, Toronto, Canada. DOI:10.1007/978-3-319-40542-1_72
  • Sherbini, K., & Krawczyk, R. (2004 December). Overview of intelligent architecture. 1st ASCAAD International Conferencee-Design İn Architecture KFUPM, 137-152. Dhahran, Saudi Arabia. https://www.ascaad.org/conference/2004/pdfs/paper10.pdf
  • Soleimani, A. (2019 18-20 October). Computational Design Thinking and Thinking Design Computing. 2019 Reynolds Symposium: Education by Design, Portland, US. https://www.wiley.com/en-sg/Computational+Design+Thinking:+Computation+Design+Thinking-p-9780470665701
  • Stevenson, C. M. (2011 March). Morphological principles: current kinetic architectural structures. Conference: In Adaptive Architecture, 1-12. Building Centre Trust and the University of Nottingham, London. https://www.researchgate.net/publication/316885581_Morphological_Principles_of_Current_Kinetic_Architectural_Structures
  • Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). A review of occupant-centric control strategies for adaptive facades. Automation in Construction, 122, 103464. https://doi.org/10.1016/j.autcon.2020.103464
  • Tabadkani, A., Shoubi, M. V., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user's visual comfort. Automation in Construction, 106, 102857. https://doi.org/10.1016/j.autcon.2019.102857
  • Wang, J., Li, J., Chen, X. (2010 17-19 December). Parametric design based on building ınformation modeling for sustainable buildings. 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 237-238. Chengdu, China. doi: DOI: 10.1109/ICCIS.2010.351
  • Yekutiel, T. P., and Y. J. Grobman. (2014). Controlling Kinetic Cladding Components in Building Facades: A Case for Autonomous Movement. The proceeding of 19th international conference of the association of computer-aided architectural design research in Asia, Hong Kong. DOI:10.52842/conf.caadria.2014.129
  • URL-1: https://www.arkitektuel.com/fun-palace-cedric-price/ Erişim Tarihi: 16.04.2023
  • URL-2: https://www.arkitektuel.com/plug-in-city/ Erişim Tarihi: 16.04.2023
  • URL-3: https://www.imarabe.org/en/architecture Erişim Tarihi: 16.04.2023
  • URL-4: https://nedkahn.com/portfolio/wind-veil / Erişim Tarihi: 17.04.2023
  • URL-5: https://igsmag.com/features/case-studies/the-al-bahar-towers-shading-the-real-envelope/ Erişim Tarihi: 17.04.2023
  • URL-6: https://www.evolo.us/opening-of-the-thematic-pavilion-for-the-expo-2012-yeosu-south-korea-soma/ Erişim Tarihi: 17.04.2023
  • URL-7: https://arquitecturaviva.com/works/media-tic-building Erişim Tarihi: 17.04.2023

Kinetik Cephe Sistemlerinin Performansa Dayalı Tasarımı ve Tasarım Süreci

Year 2023, Volume: 6 Issue: 2, 180 - 201, 31.12.2023
https://doi.org/10.51764/smutgd.1296435

Abstract

Uyarlanabilir olma fonksiyonu sayesinde dış çevreyle ve/veya iç mekandaki kullanıcılarla etkileşime girip cephede günışığına bağlı yüksek performans ve binanın yaşam döngüsü boyunca enerji etkinliği sağlayarak kullanıcıların konforunu arttıran kinetik cephe sistemleri, güneş kırıcı bir kabuk olarak verimli ve efektif çözümler sunmaktadır. Kinetik cepheyi oluşturan güneş kırıcı bileşenlerin optimum uyarlanabilirlik performansını göstermesi, bu cephelerin tasarımına ve tasarım sürecine bağlıdır. Bu bağlamda, kinetik cephenin morfolojik (fiziksel-biçimsel) yapısının modellenip kinetik dönüşümü tasarımının yapıldığı, fonksiyonel özelliklerinin belirlendiği ve performans analizlerinin gerçekleştiği tasarım sürecinde; benimsenen tasarım yaklaşımları, kullanılan tasarım sistemleri ve bu sistemlerin gerektirdiği araç, yöntem ve tekniklerin bir araya gelerek oluşturduğu tasarım prosedürleri önem kazanmaktadır. Çalışma kapsamında, kinetik cephe sistemlerinin performansa dayalı tasarımı ile tasarım sürecinin ilişkisini ortaya koymak amaçlanmıştır. Bu amaçla önce literatür taraması, sonrasında belirlenen kinetik cephe tasarım örneklerinin karşılaştırmalı analizi ve değerlendirmesi yapılmıştır. Çalışmanın sonuç bölümünde, elde edilen bulgulardan yola çıkarak performansa dayalı optimum kinetik cephe tasarımı ve tasarım sürecine dair genel tespitler yapılmış ve literatürdeki bu sistemlerin tasarımına ilişkin çalışmaların eksikliğinden bahsedilip bu alandaki tasarım yöntem ve yaklaşımlarının arttırılıp geliştirilmesi gerektiği önerilmiştir.

References

  • Akipek, F. Ö., & İnceoğlu, N. (2007). Bilgisayar destekli tasarım ve üretim teknolojilerinin mimarlıktaki kullanımları. Megaron Yıldız Teknik Üniversitesi E-Dergisi, 2(4), 237-253.
  • Albag, O., Anishchenko, M., Grassi, G., & Paoletti, I. (2020). Adaptive skins: towards new material systems. Digital transformation of the design, construction and management processes of the built environment, 209-219.
  • Alkhatib, H., Lemarchand, P., Norton, B., & O'Sullivan, D. T. J. (2021) Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering, 185, 116331. https://doi.org/10.1016/j.applthermaleng.2020.116331
  • Alkhayyat, J. (2013). Design strategy for adaptive kinetic patterns: creating a generative design for dynamic solar shading systems. (M.a. Thesis. Manchester: University of Salford School Of Build Environment MSc Digital Architectural Design). Manchester, England, https://www.academia.edu/6978438/Design_strategy_for_adaptive_kinetic_patterns_creating_a_generative_design_for_dynamic_solar_shading_system
  • Alotaibi, F. (2015). The role of kinetic envelopes to improve energy performance in buildings. Journal of Architectural Engineering Technology, 4(3), 149-153. DOI:10.4172/2168-9717.1000149
  • Arida, S. (2004). Contextualizing generative design. (Doctoral dissertation. Massachusetts Institute of Technology). Cambridge, US, https://core.ac.uk/download/pdf/4385734.pdf
  • Barozzi, M., Lienhard, J., Zanelli, A., & Monticelli, C. (2016). The sustainability of adaptive envelopes: developments of kinetic architecture. Procedia Engineering, 155, 275-284 https://doi.org/10.1016/j.proeng.2016.08.029
  • Davis, D., Burry, J., & Burry, M. (2011, July). Untangling parametric schemata: enhancing collaboration through modular programming. Proceedings of the 14th İnternational Conference on Computer Aided Architectural Design, University of Liege, Liege, 55-68. https://www.researchgate.net/publication/228843549_Untangling_Parametric_Schemata_Enhancing_Collaboration_through_Modular_Programming
  • Elkhayat, Y. O. (2014). Interactive movement in kinetic architecture. JES. Journal of Engineering Sciences, 42(3), 816-845. DOI:10.21608/jesaun.2014.115027
  • Elmokadem, A., Ekram, M., Waseef, A., & Nashaat, B. (2018). Kinetic architecture: concepts, history and applications. International Journal of Science and Research (IJSR), 7(4): 750-758. DOI:10.21275/ART20181560
  • Figliola, A. (2023). Digital workflow for climate resilient building façade generation. Building Research & Information, 51(3), 257-278. https://doi.org/10.1080/09613218.2022.2121907
  • Formentini, M., & Lenci, S. (2018). An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors. Automation in Construction, 85, 220-231. https://doi.org/10.1016/j.autcon.2017.10.006
  • Fox, M. A., & Yeh, B. P. (1999 December). Intelligent kinetic systems in architecture. In Managing Interactions in Smart Environments: 1st International Workshop on Managing Interactions in Smart Environments (MANSE’99), Dublin, 91-103.
  • Güzer, C.A., Kahraman, İ., Kanan, N.Ö, Tombak, E., Kabakçı, O.K., Gül, K. (2016, Mayıs). Bütünleşik bina tasarımı yaklaşımı ile proje geliştirme süreci uygulama kılavuzu. Enerji ve Tabii Kaynaklar Bakanlığı Yenilenebilir Enerji Genel Müdürlüğü, Çankaya, Ankara. https://webdosya.csb.gov.tr/db/meslekihizmetler/ustmenu/ustmenu838.pdf
  • Haghighat, S., & Sadeh, H. (2023). Parametric design of an automated kinetic building façade using BIM: A case study perspective. Journal of Building Engineering, 73, 106800. https://doi.org/10.1016/j.jobe.2023.106800
  • Heidari Matin, N., & Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent buildings international, 14(1), 54-73. https://doi.org/10.1080/17508975.2019.1577213
  • Henríquez, D., Herrera, R. F., & Vielma, J. C. (2022). Method for designing prequalified connections using generative design. Buildings, 12(10): 1579. https://doi.org/10.3390/buildings12101579
  • Hosseini, S. M., Mohammadi, M., & Guerra-Santin, O. (2019). Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes. Building and Environment, 165, 106396. https://doi.org/10.1016/j.buildenv.2019.106396
  • Hosseini, S. M., Mohammadi, M., Schröder, T., & Guerra-Santin, O. (2020). Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position. Journal of Building Engineering, 31, 101404. https://doi.org/10.1016/j.jobe.2020.101404
  • Hosseini, S. M., Mohammadi, M., Schröder, T., & Guerra-Santin, O. (2021). Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort. Frontiers of Architectural Research, 10(4), 821-837. https://doi.org/10.1016/j.foar.2021.07.004
  • Khoo, C. K. (2013). Morphing architecture with responsive material systems (Doctoral dissertation, RMIT University). https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Morphing-architecture-with-responsive-material-systems/9921861599501341
  • Khidmat, R. P., Fukuda, H., Paramita, B., Qingsong, M., & Hariyadi, A. (2022). Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. Journal of Building Engineering, 51, 104241. https://doi.org/10.1016/j.jobe.2022.104241
  • Knippers, J., Scheible, F., Oppe, M., & Jungjohann, H. (2012 July). Bio-inspired kinetic gfrp-façade for the thematic pavilion of the expo 2012 in yeosu. International Symposium of Shell and Spatial Structures IASS 2012, 90(6), 341-347. Seoul, South Korea. https://www.researchgate.net/publication/311534824_Bio-inspired_Kinetic_GFRP-facade_for_the_Thematic_Pavilion_of_the_EXPO_2012_in_Yeosu
  • Kolarevic, B. (2003). Designing and manufacturing architecture in the digital age. (1st ed.) Taylor & Francis https://doi.org/10.4324/9780203634561
  • Le-Thanh, L., Le-Duc, T., Ngo-Minh, H., Nguyen, Q. H., & Nguyen-Xuan, H. (2021). Optimal design of an Origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency. Energy, 219, 119557. https://doi.org/10.1016/j.energy.2020.119557
  • Leach, N. (2009). Digital morphogenesis. Architectural Design, 79(1), 32-37. https://doi.org/10.1002/ad.80
  • Loonen, R. C., Favoino, F., Hensen, J. L., & Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205-223. https://doi.org/10.1080/19401493.2016.1152303
  • Ma, W., Wang, X., Wang, J., Xiang, X., & Sun, J. (2021). Generative design in building information modelling (BIM): approaches and requirements. Sensors, 21, 21(16), 5439. https://doi.org/10.3390/s21165439
  • Mahmoud, A. H. A., & Elghazi, Y. (2016). Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. Solar Energy, 126, 111-127. https://doi.org/10.1016/j.solener.2015.12.039
  • Mallasi, Z. (2018). Using parametric BIM integration for prototyping future responsive façades. Journal of Facade Design and Engineering, 6(1): 89-100. https://doi.org/10.7480/jfde.2018.1.1865
  • Megahed, N. A. (2017). Understanding kinetic architecture: typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2): 130-146. https://doi.org/10.1080/17452007.2016.1203676
  • Menges, A., & Ahlquist, S. (2011). Computational design thinking: computation design thinking. John Wiley & Sons.
  • Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., Willmann, A., & Schlueter, A. (2016). The adaptive solar facade: from concept to prototypes. Frontiers of Architectural Research, 5(2), 143-156. https://doi.org/10.1016/j.foar.2016.03.002
  • Oxman, R. (2006). Theory and design in the first digital age. Design Studies, 27(3): 229-265. doi:10.1016/j.destud.2005.11.002
  • Oxman, R., Gu, N. (2015 16-18 September). Theories and models of parametric design thinking. Proceedings of the 33rd eCAADe Conference. 2, 477-482, Vienna, Austria. DOI:10.52842/conf.ecaade.2015.2.477
  • Panya, D. S., Kim, T., & Choo, S. (2020). A methodology of interactive motion facades design through parametric strategies. Applied Sciences, 10(4), 1218. doi: https://doi.org/10.3390/app10041218
  • Radwan, G. A., & Osama, N. (2016). Biomimicry, an approach, for energy effecient building skin design. Procedia Environmental Sciences, 34, 178-189. https://doi.org/10.1016/j.proenv.2016.04.017
  • Ramzy, N., & Fayed, H. (2011). Kinetic systems in architecture: New approach for environmental control systems and context-sensitive buildings. Sustainable Cities and Society, 1(3): 170-177. https://doi.org/10.1016/j.scs.2011.07.004
  • Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50-69. https://doi.org/10.1016/j.cad.2014.02.010
  • Sadegh, S. O., Gasparri, E., Brambilla, A., & Globa, A. (2022). Kinetic facades: An evolutionary-based performance evaluation framework. Journal of Building Engineering, 53, 104408. https://doi.org/10.1016/j.jobe.2022.104408
  • Samir, H., Shahin, M. (2018). Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal, 58(1), 346-348. https://doi.org/10.1016/j.aej.2018.11.013
  • Sankaewthong, S., Horanont, T., Miyata, K., Karnjana, J., Busayarat, C., & Xie, H. (2022). Using a biomimicry approach in the design of a kinetic façade to regulate the amount of daylight entering a working space. Buildings, 12(12), 2089. https://doi.org/10.3390/buildings12122089
  • Schleicher, S., Lienhard, J, Poppinga, S., Speck, T., Knippers, J. (2015). A methodology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105-117 https://doi.org/10.1016/j.cad.2014.01.005
  • Seyrek, C. I., Widera, B., & Woźniczka, A. (2021). Sustainability-related parameters and decision support tools for kinetic green façades. Sustainability, 13(18): 10313. https://doi.org/10.3390/su131810313
  • Shen, Y. T., & Lu, P. W. (2016, March). The development of kinetic façade units with BIM-based active control system for the adaptive building energy performance service. International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 517-526. DOI:10.52842/conf.caadria.2016.517
  • Shen, Y. T., & Wu, T. Y. (2016 17-22 July). Sync-BIM: the interactive BIM-Based platform for controlling data-driven kinetic façade. HCI International 2016–Posters' Extended Abstracts: 18th International Conference, HCI International Proceedings Part II, 445-450, Toronto, Canada. DOI:10.1007/978-3-319-40542-1_72
  • Sherbini, K., & Krawczyk, R. (2004 December). Overview of intelligent architecture. 1st ASCAAD International Conferencee-Design İn Architecture KFUPM, 137-152. Dhahran, Saudi Arabia. https://www.ascaad.org/conference/2004/pdfs/paper10.pdf
  • Soleimani, A. (2019 18-20 October). Computational Design Thinking and Thinking Design Computing. 2019 Reynolds Symposium: Education by Design, Portland, US. https://www.wiley.com/en-sg/Computational+Design+Thinking:+Computation+Design+Thinking-p-9780470665701
  • Stevenson, C. M. (2011 March). Morphological principles: current kinetic architectural structures. Conference: In Adaptive Architecture, 1-12. Building Centre Trust and the University of Nottingham, London. https://www.researchgate.net/publication/316885581_Morphological_Principles_of_Current_Kinetic_Architectural_Structures
  • Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). A review of occupant-centric control strategies for adaptive facades. Automation in Construction, 122, 103464. https://doi.org/10.1016/j.autcon.2020.103464
  • Tabadkani, A., Shoubi, M. V., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user's visual comfort. Automation in Construction, 106, 102857. https://doi.org/10.1016/j.autcon.2019.102857
  • Wang, J., Li, J., Chen, X. (2010 17-19 December). Parametric design based on building ınformation modeling for sustainable buildings. 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 237-238. Chengdu, China. doi: DOI: 10.1109/ICCIS.2010.351
  • Yekutiel, T. P., and Y. J. Grobman. (2014). Controlling Kinetic Cladding Components in Building Facades: A Case for Autonomous Movement. The proceeding of 19th international conference of the association of computer-aided architectural design research in Asia, Hong Kong. DOI:10.52842/conf.caadria.2014.129
  • URL-1: https://www.arkitektuel.com/fun-palace-cedric-price/ Erişim Tarihi: 16.04.2023
  • URL-2: https://www.arkitektuel.com/plug-in-city/ Erişim Tarihi: 16.04.2023
  • URL-3: https://www.imarabe.org/en/architecture Erişim Tarihi: 16.04.2023
  • URL-4: https://nedkahn.com/portfolio/wind-veil / Erişim Tarihi: 17.04.2023
  • URL-5: https://igsmag.com/features/case-studies/the-al-bahar-towers-shading-the-real-envelope/ Erişim Tarihi: 17.04.2023
  • URL-6: https://www.evolo.us/opening-of-the-thematic-pavilion-for-the-expo-2012-yeosu-south-korea-soma/ Erişim Tarihi: 17.04.2023
  • URL-7: https://arquitecturaviva.com/works/media-tic-building Erişim Tarihi: 17.04.2023
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Articles
Authors

Ahmet Necip Belek 0000-0001-8670-5682

Ruşen Yamaçlı 0000-0001-9659-9246

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date May 12, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Belek, A. N., & Yamaçlı, R. (2023). Kinetik Cephe Sistemlerinin Performansa Dayalı Tasarımı ve Tasarım Süreci. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 6(2), 180-201. https://doi.org/10.51764/smutgd.1296435

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.