Research Article
BibTex RIS Cite

Granül Aerojelin Hafif Harman Tuğlada Kullanımı: Termal Özellik ve Basınç Dayanımı Üzerine

Year 2024, Volume: 7 Issue: 2, 197 - 206, 14.12.2024
https://doi.org/10.51764/smutgd.1580055

Abstract

Harman tuğla, günümüzde pek tercih edilmese de şimdilerde kullanılan fabrikasyon tuğlaların atası olarak tanımlanabilmektedir. Teknolojinin gelişmesi harman tuğlanın özelliklerini ve formunun değişmesine yol açmıştır. Mimari uygulamalarda sıklıkla karşımıza çıkan harman tuğla kullanımı eskiye nazaran az da olsa devam etmektedir. Günümüzde, restorasyon projeleri başta olmak üzere birçok alanda etkinliğini sürdürmektedir. Bu çalışmada, harman tuğla bünyesine nanomalzeme olan granül aerojel ikame edilerek ısı yalıtımı iyileştirilmiş, birim ağırlığı düşük ve TS standartlarına uygun basınç dayanımına sahip harman tuğla üretimi amaçlanmıştır. Çalışmada, hacimsel olarak, %0, %2,5, %5, %7,5 ve %10 oranında granül aerojel killi toprak ile yer değiştirilmiş ve katkılı tuğla numuneleri üretilmiştir. Hafif tuğla üretimi için kullanılan asidik pomza %50 oranında sabit tutulmuştur. Hafif harman tuğla numuneleri 900 oC ve 1000 oC’de pişirilmiştir. Çalışma sonucunda, ısı yalıtım özellikleri iyileştirilmiş ve istenilen standartlara uygun basınç dayanımına sahip harman tuğla numuneleri üretilmiştir.

References

  • Aerojel Türkiye, (2024). https://aerogelturkiye.com/aerogel-granulleri/.
  • Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). The investigation of use as aggregate in lightweight concrete production of boron wastes. Civil Engineering Journal, 6(7), 1328-35. DOI:10.28991/cej-2020-03091551
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023). Effect of Blast Furnace Slag on Environmentally Friendly Fly Ash Based Geopolymer Bricks. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(29), 151-163. https://doi.org/10.5281/zenodo.8418240.
  • Al-hasanı, H. J. M., Çağlar, H., & Çağlar, A. (2023a). Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag. Journal of Sustainable Engineering Applications and Technological Developments, 6(1), 23-33. https://doi.org/10.51764/smutgd.1247965.
  • Adhikary, S.K., Rudžionis, Z. & Vaičiukynienė, D. (2020). Development of flowable ultra - lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31, 101399: 1-20. https://doi.org/10.1016/j.jobe.2020.101399
  • Baetens, R., Jelle, B. P., & Gustavsen, A. (2011). Aerogel insulation for building applications: A state-of-the-art review. Energy and buildings, 43(4), 761-769. https://doi.org/ 10.1016/j.enbuild.2010.12.012.
  • Bheekhun, N., Abu Talib, A. R., & Hassan, M. R. (2013). Aerogels in aerospace: an overview. Advances in Materials Science and Engineering, 2013(1), 406065. https://doi.org/10.1155/2013/406065.
  • Buratti, C., Greco, P. F., Susta, S., & Merli, F. (2022). Clay-Aerogel Mixtures for Bricks Fabrication: Experimental Characterization and Thermal Performance Simulation. Available at SSRN 4953552.
  • Çağlar, H., Çağlar, A., Korkmaz, S. Z., Demirel, B., & Bayraktar, O. Y. (2018). Comparison of Physical, Mechanical and Structural Characterization Properties of Hand-Made Blend Brick and Factory-Produced Brick Used in the Construction of Traditional Kastamonu Houses. Fırat University Journal of Engineering Sciences, 30(2), 39-48.
  • Çağlar, H., & Çağlar, A. (2019). Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition. International Journal of Research–Granthaalayah, 7(1), 126-136. DOI:10.29121/granthaalayah.v7.i1.2019.1041.
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). Effect of boron wastes on the engineering properties of perlite based brick. Turkish Journal of Nature and Science, 9(2), 50-56. https://doi.org/10.46810/tdfd.731005.
  • Fikry, M., Herranz, J., Leisibach, S., Khavlyuk, P., Eychmüller, A., & Schmidt, T. J. (2023). PEMFC-Performance of Unsupported Pt-Ni Aerogel Cathode Catalyst Layers under Automotive-Relevant Operative Conditions. Journal of The Electrochemical Society, 170(11), 114524. DOI 10.1149/1945-7111/ad0e45
  • Ganobjak, M., Brunner, S., & Wernery, J. (2020). Aerogel materials for heritage buildings: Materials, properties and case studies. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007
  • Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023). Get the light & keep the warmth-A highly insulating, translucent aerogel glass brick for building envelopes. Journal of Building Engineering, 64, 105600. https://doi.org/10.1016/j.jobe.2022.105600
  • García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40-63. https://doi.org/10.1016/j.jconrel.2021.02.012
  • Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52, 130-136. https://doi.org/10.1016/j.conbuildmat.2013.10.100
  • Gu, X., & Ling, Y. (2024). Research progress of aerogel materials in the field of construction. Alexandria Engineering Journal, 91, 620-631. https://doi.org/10.1016/j.aej.2024.02.039.
  • Guilminot, E., Fischer, F., Chatenet, M., Rigacci, A., Berthon-Fabry, S., Achard, P., & Chainet, E. (2007). Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. Journal of Power Sources, 166(1), 104-111. https://doi.org/10.1016/j.jpowsour.2006.12.084.
  • Gül, M. (2018). Investigation of the use of waste plastics and pet as a lightweight concrete aggregate, Master's Thesis, Fırat University Institute of Science and Technology, Elazığ.
  • Han, F., Lv, Y., Liang, T., Kong, X., Mei, H., & Wang, S. (2024). Improvement of aerogel-incorporated concrete by incorporating polyvinyl alcohol fiber: Mechanical strength and thermal insulation. Construction and Building Materials, 449, 138422. https://doi.org/10.1016/j.conbuildmat.2024.138422
  • Jin, R., Zhou, Z., Liu, J., Shi, B., Zhou, N., Wang, X., Jia, X., Guo, D. & Xu, B. (2023). Aerogels for thermal protection and their application in aerospace. Gels, 9(8), 606. https://doi.org/10.3390/gels9080606.
  • Joo, P., Yao, Y., Teo, N., & Jana, S. C. (2021). Modular aerogel brick fabrication via 3D-printed molds. Additive Manufacturing, 46, 102059. https://doi.org/10.1016/j.addma.2021.102059.
  • Kale, M. O., Çağlar, H., Çağlar, A., Apay, A. C., & Çimen, S. (2021). Improving of lightweight concrete properties produced with Pumice Aggregate of Nevşehir Region with fly Ash Substitution. Academic Platform-Journal of Engineering and Science, 9(2), 302-308. https://doi.org/10.21541/apjes.732592.
  • Karaman, S. (2006). Color formation in building bricks. KS University Journal of Science and Engineering, 9(1), 125-130.
  • Kim, C., & Hong, H. J. (2024). Recovery and Isolation Strategies of Platinum, Palladium, and Rhodium from Spent Automotive Catalyst Leachate Using a Polyethylene-Imine-Grafted Cellulose Nanofibril Aerogel. Industrial & Engineering Chemistry Research, 63(10), 4547-4556.
  • Kim, S. J., Chase, G., & Jana, S. C. (2016). The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Separation and Purification Technology, 166, 48-54. https://doi.org/10.1016/j.seppur.2016.04.017.
  • Kistler, S.S. (1931). Coherent expanded aerogels and jellies, Nature 127 (1931) 741, https://doi.org/10.1038/127741a0.
  • Koriakovtseva, T. A., Dontsova, A. E., & Nemova, D. V. (2024). Mechanical and Thermal Properties of an Energy-Efficient Cement Composite Incorporating Silica Aerogel. Buildings, 14(4), 1034. https://doi.org/10.3390/buildings14041034.
  • Le, C. T., Truong, T. Q., Nguyen, D. P. T., Bui, N. T. K., Goh, X. Y., Huynh, H. K. P., Nguyen, A.T., Phan, A.N., Ngo, T.M. & Nguyen, S. T. (2024). Advanced aerogels from waste tires and coal ash for thermal and acoustic insulation applications-insights into the effect of synthesis conditions and precursors contents on aerogel characteristics. Journal of Porous Materials, 31(1), 335-350.
  • Leventis, N., Koebel, M.M. Aerogels Handbook. Netherlands, Springer, New York, 2011, pp. 3–15.
  • Li, Z., Yang, W., Zhang, G., Ren, W., & Shi, Z. (2024). Impact of thermal conductivity of aerogel-enhanced insulation materials on building energy efficiency in environments with different temperatures and humidity levels. Thermal Science and Engineering Progress, 50, 102540. https://doi.org/10.1016/j.tsep.2024.102540.
  • Marin, M. A., Mallepally, R. R., & McHugh, M. A. (2014). Silk fibroin aerogels for drug delivery applications. The Journal of Supercritical Fluids, 91, 84-89. https://doi.org/10.1016/j.supflu.2014.04.014.
  • Marotta T., Coffey JC., Brown CL., LaPlante C. Basic Construction Materials. 8th ed. Pearson Prentice Hall; 2010. Pp.336.
  • Meliță, L., Calotă, R., & Amăreanu, M. (2024). Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study. Buildings, 14(8), 2300. https://doi.org/10.3390/buildings14082300.
  • Rahman, ME., Ong, PJ., Nabinejad, O., Islam, S., Khandoker NAN., Pakrashi, V. and Shorowordi, KM. (2018).Utilization of blended waste materials in bricks, Technologies, 6 (20), 1-12. https://doi.org/10.3390/technologies6010020.
  • Riffat, S. B., & Qiu, G. (2013). A review of state-of-the-art aerogel applications in buildings. International Journal of Low-Carbon Technologies, 8(1), 1-6. https://doi.org/10.1093/ijlct/cts001.
  • Rotter, H., Landau, M. V., Carrera, M., Goldfarb, D., & Herskowitz, M. (2004). High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Applied Catalysis B: Environmental, 47(2), 111-126. https://doi.org/10.1016/j. apcatb.2003.08.006.
  • Rostami, J., Khandel, O., Sedighardekani, R., Sahneh, A. R., & Ghahari, S. (2021). Enhanced workability, durability, and thermal properties of cement-based composites with aerogel and paraffin coated recycled aggregates. Journal of Cleaner Production, 297, 126518. https://doi.org/10.1016/j.jclepro.2021.126518.
  • Shakir, A. A., Naganathan, S., & Mustapha, K. N. B. (2013). Development of bricks from waste material: A review paper. Australian Journal of Basic and Applied Sciences, 7(8), 812-818.
  • Shanmugam, G., Gunasekaran, E., Karuppusamy, R. S., Ramesh, R., & Vellaichamy, P. (2020, November). Utilization of aerogel in building construction–A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 955, No. 1, p. 012032). IOP Publishing.
  • She, W., Wu, Z., Yang, J., Pan, H., Du, F., Du, Z., & Miao, C. (2024). Cement-based biomimetic metamaterials. Journal of Building Engineering, 110050. https://doi.org/10.1016/j.jobe.2024.110050.
  • Shohan, A. A. A., Zaid, O., Arbili, M. M., Alsulamy, S. H., & Ibrahim, W. M. (2024). Development of novel ultra-high-performance lightweight concrete modified with dehydrated cement powder and aerogel. Journal of Sustainable Cement-Based Materials, 13(3), 351-374. https://doi.org/10.1080/21650373.2023.2278134.
  • Song, Z., Su, L., Yuan, M., Shang, S., & Cui, S. (2024). Self-cleaning, energy-saving aerogel composites possessed sandwich structure: Improving indoor comfort with excellent thermal insulation and acoustic performance. Energy and Buildings, 310, 114098. https://doi.org/10.1016/j.enbuild.2024.114098.
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). Effects of borıc acid additive to pumice aggregate lightweight concrete properties. International Journal of Scientific and Technological Research, 6(9), 1-10.
  • Varamesh, A., Zhu, Y., Hu, G., Wang, H., Rezania, H., Li, Y., ... & Hu, J. (2024). Fully biobased thermal insulating aerogels with superior fire-retardant and mechanical properties. Chemical Engineering Journal, 495, 153587. https://doi.org/10.1016/j.cej.2024.153587.
  • Wakili, K. G., Stahl, T., Heiduk, E., Schuss, M., Vonbank, R., Pont, U., ... & Mahdavi, A. (2015). High performance aerogel containing plaster for historic buildings with structured façades. Energy Procedia, 78, 949-954. https://doi.org/10.1016/j.egypro.2015.11.027.
  • Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick—An aerogel-filled insulating brick. Energy Procedia, 134, 490-498. https://doi.org/10.1016/j.egypro.2017.09.607.
  • Westgate, P., Paine, K., & Ball, R. J. (2018). Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Construction and Building Materials, 158, 472-480. https://doi.org/10.1016/j.conbuildmat.2017.09.177.
  • Wu, C., Wang, L., Yan, X., Huang, H., Pan, Y., Wang, H., Wang, W., Yuan, S., Fan, J., Jin, X., Hong, C. & Zhang, X. (2024). Environmental-friendly and fast production of ultra-strong phenolic aerogel composite with superior thermal insulation and ablative-resistance. Composites Science and Technology, 256, 110776. https://doi.org/10.1016/j.compscitech.2024.110776.
  • Zhai, C., & Jana, S. C. (2017). Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS applied materials & interfaces, 9(35), 30074-30082. https://doi.org/10.1021/acsami.7b09345.
  • Zhang, Z., Wong, Y. C., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101-1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152.
  • Zhang, X., Yu, J., Zhao, C., & Si, Y. (2024a). Elastic SiC Aerogel for Thermal Insulation: A Systematic Review. Small, 2311464. https://doi.org/10.1002/smll.202311464.
  • Zhang, X., Huang, D., He, S., Kong, Z., Yang, J., Yang, X., & Chen, Z. (2024b). A Novel Thermal Insulation Material with Excellent Mechanical Properties: Carbon Fiber-Modified Aerogel/Cement-Based Composite Material. Journal of Building Engineering, 109957. https://doi.org/10.1016/j.jobe.2024.109957.

Use of Granular Aerogel in Lightweight Blend Brick: On Thermal Properties and Compressive Strenght

Year 2024, Volume: 7 Issue: 2, 197 - 206, 14.12.2024
https://doi.org/10.51764/smutgd.1580055

Abstract

Blended bricks can be defined as the ancestor of the fabricated bricks used today, although they are not preferred much today. The development of technology has led to changes in the properties and form of blended bricks. The use of blended bricks, which we frequently encounter in architectural applications, continues, albeit less than in the past. Today, it continues its activities in many areas, especially restoration projects. In this study, it was aimed to produce blended bricks with improved thermal insulation, low unit weight and compressive strength accordance to TS standards by substituting granular aerogel, which is a nanomaterial, into the blended brick body. In the study, granulated aerogel is replaced with clay soil with 0%, 2.5%, 5%, 7.5% and 10% by volume and additived brick samples are produced. Acidic pumice used for lightweight brick production was kept constant at 50%. Lightweight blended brick samples are fired at 900 oC and 1000 oC. As a result of the study, blended brick samples with improved thermal insulation properties and compressive strength in accordance to the required standards were produced.

References

  • Aerojel Türkiye, (2024). https://aerogelturkiye.com/aerogel-granulleri/.
  • Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). The investigation of use as aggregate in lightweight concrete production of boron wastes. Civil Engineering Journal, 6(7), 1328-35. DOI:10.28991/cej-2020-03091551
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023). Effect of Blast Furnace Slag on Environmentally Friendly Fly Ash Based Geopolymer Bricks. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(29), 151-163. https://doi.org/10.5281/zenodo.8418240.
  • Al-hasanı, H. J. M., Çağlar, H., & Çağlar, A. (2023a). Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag. Journal of Sustainable Engineering Applications and Technological Developments, 6(1), 23-33. https://doi.org/10.51764/smutgd.1247965.
  • Adhikary, S.K., Rudžionis, Z. & Vaičiukynienė, D. (2020). Development of flowable ultra - lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31, 101399: 1-20. https://doi.org/10.1016/j.jobe.2020.101399
  • Baetens, R., Jelle, B. P., & Gustavsen, A. (2011). Aerogel insulation for building applications: A state-of-the-art review. Energy and buildings, 43(4), 761-769. https://doi.org/ 10.1016/j.enbuild.2010.12.012.
  • Bheekhun, N., Abu Talib, A. R., & Hassan, M. R. (2013). Aerogels in aerospace: an overview. Advances in Materials Science and Engineering, 2013(1), 406065. https://doi.org/10.1155/2013/406065.
  • Buratti, C., Greco, P. F., Susta, S., & Merli, F. (2022). Clay-Aerogel Mixtures for Bricks Fabrication: Experimental Characterization and Thermal Performance Simulation. Available at SSRN 4953552.
  • Çağlar, H., Çağlar, A., Korkmaz, S. Z., Demirel, B., & Bayraktar, O. Y. (2018). Comparison of Physical, Mechanical and Structural Characterization Properties of Hand-Made Blend Brick and Factory-Produced Brick Used in the Construction of Traditional Kastamonu Houses. Fırat University Journal of Engineering Sciences, 30(2), 39-48.
  • Çağlar, H., & Çağlar, A. (2019). Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition. International Journal of Research–Granthaalayah, 7(1), 126-136. DOI:10.29121/granthaalayah.v7.i1.2019.1041.
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). Effect of boron wastes on the engineering properties of perlite based brick. Turkish Journal of Nature and Science, 9(2), 50-56. https://doi.org/10.46810/tdfd.731005.
  • Fikry, M., Herranz, J., Leisibach, S., Khavlyuk, P., Eychmüller, A., & Schmidt, T. J. (2023). PEMFC-Performance of Unsupported Pt-Ni Aerogel Cathode Catalyst Layers under Automotive-Relevant Operative Conditions. Journal of The Electrochemical Society, 170(11), 114524. DOI 10.1149/1945-7111/ad0e45
  • Ganobjak, M., Brunner, S., & Wernery, J. (2020). Aerogel materials for heritage buildings: Materials, properties and case studies. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007
  • Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023). Get the light & keep the warmth-A highly insulating, translucent aerogel glass brick for building envelopes. Journal of Building Engineering, 64, 105600. https://doi.org/10.1016/j.jobe.2022.105600
  • García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40-63. https://doi.org/10.1016/j.jconrel.2021.02.012
  • Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52, 130-136. https://doi.org/10.1016/j.conbuildmat.2013.10.100
  • Gu, X., & Ling, Y. (2024). Research progress of aerogel materials in the field of construction. Alexandria Engineering Journal, 91, 620-631. https://doi.org/10.1016/j.aej.2024.02.039.
  • Guilminot, E., Fischer, F., Chatenet, M., Rigacci, A., Berthon-Fabry, S., Achard, P., & Chainet, E. (2007). Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. Journal of Power Sources, 166(1), 104-111. https://doi.org/10.1016/j.jpowsour.2006.12.084.
  • Gül, M. (2018). Investigation of the use of waste plastics and pet as a lightweight concrete aggregate, Master's Thesis, Fırat University Institute of Science and Technology, Elazığ.
  • Han, F., Lv, Y., Liang, T., Kong, X., Mei, H., & Wang, S. (2024). Improvement of aerogel-incorporated concrete by incorporating polyvinyl alcohol fiber: Mechanical strength and thermal insulation. Construction and Building Materials, 449, 138422. https://doi.org/10.1016/j.conbuildmat.2024.138422
  • Jin, R., Zhou, Z., Liu, J., Shi, B., Zhou, N., Wang, X., Jia, X., Guo, D. & Xu, B. (2023). Aerogels for thermal protection and their application in aerospace. Gels, 9(8), 606. https://doi.org/10.3390/gels9080606.
  • Joo, P., Yao, Y., Teo, N., & Jana, S. C. (2021). Modular aerogel brick fabrication via 3D-printed molds. Additive Manufacturing, 46, 102059. https://doi.org/10.1016/j.addma.2021.102059.
  • Kale, M. O., Çağlar, H., Çağlar, A., Apay, A. C., & Çimen, S. (2021). Improving of lightweight concrete properties produced with Pumice Aggregate of Nevşehir Region with fly Ash Substitution. Academic Platform-Journal of Engineering and Science, 9(2), 302-308. https://doi.org/10.21541/apjes.732592.
  • Karaman, S. (2006). Color formation in building bricks. KS University Journal of Science and Engineering, 9(1), 125-130.
  • Kim, C., & Hong, H. J. (2024). Recovery and Isolation Strategies of Platinum, Palladium, and Rhodium from Spent Automotive Catalyst Leachate Using a Polyethylene-Imine-Grafted Cellulose Nanofibril Aerogel. Industrial & Engineering Chemistry Research, 63(10), 4547-4556.
  • Kim, S. J., Chase, G., & Jana, S. C. (2016). The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Separation and Purification Technology, 166, 48-54. https://doi.org/10.1016/j.seppur.2016.04.017.
  • Kistler, S.S. (1931). Coherent expanded aerogels and jellies, Nature 127 (1931) 741, https://doi.org/10.1038/127741a0.
  • Koriakovtseva, T. A., Dontsova, A. E., & Nemova, D. V. (2024). Mechanical and Thermal Properties of an Energy-Efficient Cement Composite Incorporating Silica Aerogel. Buildings, 14(4), 1034. https://doi.org/10.3390/buildings14041034.
  • Le, C. T., Truong, T. Q., Nguyen, D. P. T., Bui, N. T. K., Goh, X. Y., Huynh, H. K. P., Nguyen, A.T., Phan, A.N., Ngo, T.M. & Nguyen, S. T. (2024). Advanced aerogels from waste tires and coal ash for thermal and acoustic insulation applications-insights into the effect of synthesis conditions and precursors contents on aerogel characteristics. Journal of Porous Materials, 31(1), 335-350.
  • Leventis, N., Koebel, M.M. Aerogels Handbook. Netherlands, Springer, New York, 2011, pp. 3–15.
  • Li, Z., Yang, W., Zhang, G., Ren, W., & Shi, Z. (2024). Impact of thermal conductivity of aerogel-enhanced insulation materials on building energy efficiency in environments with different temperatures and humidity levels. Thermal Science and Engineering Progress, 50, 102540. https://doi.org/10.1016/j.tsep.2024.102540.
  • Marin, M. A., Mallepally, R. R., & McHugh, M. A. (2014). Silk fibroin aerogels for drug delivery applications. The Journal of Supercritical Fluids, 91, 84-89. https://doi.org/10.1016/j.supflu.2014.04.014.
  • Marotta T., Coffey JC., Brown CL., LaPlante C. Basic Construction Materials. 8th ed. Pearson Prentice Hall; 2010. Pp.336.
  • Meliță, L., Calotă, R., & Amăreanu, M. (2024). Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study. Buildings, 14(8), 2300. https://doi.org/10.3390/buildings14082300.
  • Rahman, ME., Ong, PJ., Nabinejad, O., Islam, S., Khandoker NAN., Pakrashi, V. and Shorowordi, KM. (2018).Utilization of blended waste materials in bricks, Technologies, 6 (20), 1-12. https://doi.org/10.3390/technologies6010020.
  • Riffat, S. B., & Qiu, G. (2013). A review of state-of-the-art aerogel applications in buildings. International Journal of Low-Carbon Technologies, 8(1), 1-6. https://doi.org/10.1093/ijlct/cts001.
  • Rotter, H., Landau, M. V., Carrera, M., Goldfarb, D., & Herskowitz, M. (2004). High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Applied Catalysis B: Environmental, 47(2), 111-126. https://doi.org/10.1016/j. apcatb.2003.08.006.
  • Rostami, J., Khandel, O., Sedighardekani, R., Sahneh, A. R., & Ghahari, S. (2021). Enhanced workability, durability, and thermal properties of cement-based composites with aerogel and paraffin coated recycled aggregates. Journal of Cleaner Production, 297, 126518. https://doi.org/10.1016/j.jclepro.2021.126518.
  • Shakir, A. A., Naganathan, S., & Mustapha, K. N. B. (2013). Development of bricks from waste material: A review paper. Australian Journal of Basic and Applied Sciences, 7(8), 812-818.
  • Shanmugam, G., Gunasekaran, E., Karuppusamy, R. S., Ramesh, R., & Vellaichamy, P. (2020, November). Utilization of aerogel in building construction–A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 955, No. 1, p. 012032). IOP Publishing.
  • She, W., Wu, Z., Yang, J., Pan, H., Du, F., Du, Z., & Miao, C. (2024). Cement-based biomimetic metamaterials. Journal of Building Engineering, 110050. https://doi.org/10.1016/j.jobe.2024.110050.
  • Shohan, A. A. A., Zaid, O., Arbili, M. M., Alsulamy, S. H., & Ibrahim, W. M. (2024). Development of novel ultra-high-performance lightweight concrete modified with dehydrated cement powder and aerogel. Journal of Sustainable Cement-Based Materials, 13(3), 351-374. https://doi.org/10.1080/21650373.2023.2278134.
  • Song, Z., Su, L., Yuan, M., Shang, S., & Cui, S. (2024). Self-cleaning, energy-saving aerogel composites possessed sandwich structure: Improving indoor comfort with excellent thermal insulation and acoustic performance. Energy and Buildings, 310, 114098. https://doi.org/10.1016/j.enbuild.2024.114098.
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). Effects of borıc acid additive to pumice aggregate lightweight concrete properties. International Journal of Scientific and Technological Research, 6(9), 1-10.
  • Varamesh, A., Zhu, Y., Hu, G., Wang, H., Rezania, H., Li, Y., ... & Hu, J. (2024). Fully biobased thermal insulating aerogels with superior fire-retardant and mechanical properties. Chemical Engineering Journal, 495, 153587. https://doi.org/10.1016/j.cej.2024.153587.
  • Wakili, K. G., Stahl, T., Heiduk, E., Schuss, M., Vonbank, R., Pont, U., ... & Mahdavi, A. (2015). High performance aerogel containing plaster for historic buildings with structured façades. Energy Procedia, 78, 949-954. https://doi.org/10.1016/j.egypro.2015.11.027.
  • Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick—An aerogel-filled insulating brick. Energy Procedia, 134, 490-498. https://doi.org/10.1016/j.egypro.2017.09.607.
  • Westgate, P., Paine, K., & Ball, R. J. (2018). Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Construction and Building Materials, 158, 472-480. https://doi.org/10.1016/j.conbuildmat.2017.09.177.
  • Wu, C., Wang, L., Yan, X., Huang, H., Pan, Y., Wang, H., Wang, W., Yuan, S., Fan, J., Jin, X., Hong, C. & Zhang, X. (2024). Environmental-friendly and fast production of ultra-strong phenolic aerogel composite with superior thermal insulation and ablative-resistance. Composites Science and Technology, 256, 110776. https://doi.org/10.1016/j.compscitech.2024.110776.
  • Zhai, C., & Jana, S. C. (2017). Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS applied materials & interfaces, 9(35), 30074-30082. https://doi.org/10.1021/acsami.7b09345.
  • Zhang, Z., Wong, Y. C., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101-1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152.
  • Zhang, X., Yu, J., Zhao, C., & Si, Y. (2024a). Elastic SiC Aerogel for Thermal Insulation: A Systematic Review. Small, 2311464. https://doi.org/10.1002/smll.202311464.
  • Zhang, X., Huang, D., He, S., Kong, Z., Yang, J., Yang, X., & Chen, Z. (2024b). A Novel Thermal Insulation Material with Excellent Mechanical Properties: Carbon Fiber-Modified Aerogel/Cement-Based Composite Material. Journal of Building Engineering, 109957. https://doi.org/10.1016/j.jobe.2024.109957.
There are 53 citations in total.

Details

Primary Language English
Subjects Architecture (Other)
Journal Section Articles
Authors

Arzu Çağlar 0000-0003-3928-8059

Early Pub Date December 14, 2024
Publication Date December 14, 2024
Submission Date November 5, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Çağlar, A. (2024). Use of Granular Aerogel in Lightweight Blend Brick: On Thermal Properties and Compressive Strenght. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 7(2), 197-206. https://doi.org/10.51764/smutgd.1580055

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.