Review
PDF EndNote BibTex RIS Cite

Contaminant removal processes from soil

Year 2022, Volume 11, Issue 1, 35 - 42, 27.07.2022
https://doi.org/10.21657/soilst.1072005

Abstract

Soil pollution of numerous inorganic and organic chemicals has resulted to the destruction of vast amounts of arable and urban land around the world. Toxic pollutants pose a serious health danger to individuals as well as other biological processes. Dispersed literature is used to scientifically examine the numerous physical and anthropogenic causes and probable risks to determine the remediation solutions for a variety of toxins and heavy metals. This review discusses the remediation approaches such as phytoremediation as well as the chemical strategies. Chemical remediation methods like soil cleaning or verification are comparatively extensive and environmentally harmful, making them unsuitable for big-scale soil remediation operations. Phytoremediation, on the other hand, has arisen as an environmentally sustainable and viable technique for restoring the polluted soils, but relatively little attempts have been made to demonstrate this technique in the region. Heavy metal-polluted soil remediation is needed to decrease the related dangers, increase the land requirements for agricultural cultivation, improve food security, as well as reduce land tenure issues caused by changing land-use patterns.

References

  • Ahmad, R., & Rahman, A. (2009). Sorption characteristics of atrazine and imazethapyr in soils of New Zealand importance of independently determined sorption data. Journal Agricalture and Food Chemistry, 57(22), 10866–10875. https://doi.org/10.1021/jf901365j
  • Alvarez, J. M., Almendros, P., & Gonzalez, D. (2009). Residual Effects of Natural Zn Chelates on Navy Bean Response, Zn Leaching and Soil Zn Status, Plant and Soil, 317, 277-291. https://doi.org/10.1007/s11104-008-9808-9
  • Appenroth, K. J. (2010). Definition of Heavy Metals and Their Role in Biological Systems: Soil Heavy Metals, Springer Heidelberg, Berlin. https://doi.org/10.1007/978-3-642-02436-8_2
  • Borja, J., Taleon, D. M., Auresenia, J., & Gallardo, S. (2005). Polychlorinated Biphenyls and Their Biodegradation, Process Biochemistry, 40, 1999- 2013. https://doi.org/10.1016/j.procbio.2004.08.006
  • Cabral, L., Soares, C. R., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular Mycorrhizal Fungi in Phytoremediation of Contaminated Areas by Trace Elements: Mechanisms and Major Benefits of Their Applications, World Journal Microbiol Biotechnology, 31, 1655-1664. https://doi.org/10.1007/s11274-015-1918-y
  • Cabrejo, E. & Phillips, E. (2010). In Situ Remediation and Stabilization Technologies for Mercury in Clay Soils, Student Summer Internship Technical Report, DOE-FIU Science & Technology Workforce Development Program, US Department of Energy.
  • Cajthaml, T., Erbanova, P. Sasek, V, & Moeder, M. (2006). Breakdown Products on Metabolic Pathway of Degradation of Benz[A]Anthracene by a Ligninolytic Fungus, Chemosphere, 64, 560-564. https://doi.org/10.1016/j.chemosphere.2005.11.034
  • Dardouri, S., & Sghaier, J. (2018). Adsorption Characteristics of Layered Soil as Delay Barrier of Some Organic Contaminants: Experimental and Numerical Modeling, Environmental Modelling & Software, 110, 95-106. https://doi.org/10.1016/j.envsoft.2018.09.003
  • Fu, L., Li, J., Wang, G., Luan, Y., & Dai, W. (2021). Adsorption Behavior of Organic Pollutants On Microplastics, Ecotoxicology and Environmental Safety, 217, 112207. https://doi.org/10.1016/j.ecoenv.2021.112207
  • Gao, J., Wang, B., Peng, R., Li, Z., Xu, J., Tian, Y., & Yao, Q. (2021). Phytoremediation of Multiple Persistent Pollutants Co-Contaminated Soil by Hhssb Transformed Plant, Environmental Research, 197, 110959. https://doi.org/10.1016/j.envres.2021.110959
  • James, T. K., Ghanizadeh, H., Harrington K. C., & Bolan, N. S. (2019). Effect on Herbicide Adsorption of Organic Forestry Waste Products Used for Soil Remediation, Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54, 5, 407-415. https://doi.org/10.1080/03601234.2019.1574170
  • Jiang, R., Wang, M., & Chen, W. (2018). Characterization of Adsorption and Desorption of Lawn Herbicide Siduron in Heavy Metal Contaminated Soils, Chemosphere, 204, 483-491. https://doi.org/10.1016/j.chemosphere.2018.04.045
  • Jones, D. L., Edwards-Jones, G., & Murphy, D. V. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology and Biochemistry, 43(4), 804–813. https://doi.org/10.1016/j.soilbio.2010.12.015
  • Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165, 4, 277–304.
  • Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of Volatile Selenium Compounds by Plants. Collection Procedures and Preliminary Observations, J. Agricaltural. Food Chemistry., 14,( 6), 638–640. https://doi.org/10.1021/jf60148a027
  • Lin, H., Chuang, T., Yang, P., Guo, L., & Wang, S. (2021). Adsorption and Desorption of Thallium(I) in Soils: The Predominant Contribution by Clay Minerals, Applied Clay Science, 205, 106063. https://doi.org/10.1016/j.clay.2021.106063
  • Navia, R., Fuentes, B., Lorber, K., Mora, M., & Diez, M. (2005). In-series Columns Adsorption Performance of Kraft Mill Wastewater Pollutants onto Volcanic Soil, Chemosphere, 60 (7), 870-878. https://doi.org/10.1016/j.chemosphere.2005.01.036
  • Shi, Z., Zhang, F., & Wang, C. (2018). Adsorption of phenanthrene by earthworms - A Pathway for Understanding the Fate of Hydrophobic Organic Contaminants in Soil-Earthworm Systems, Journal of Environmental Management, 212, 115-120. https://doi.org/10.1016/j.jenvman.2018.01.079
  • Smaranda, C., Popescu, M., Bulgariu, D., Măluţan, T., & Gavrilescu, M. (2017). Adsorption of organic pollutants onto a Romanian soil: Column dynamics and transport, Process Safety and Environmental Protection, 108, 108-120. https://doi.org/10.1016/j.psep.2016.06.027
  • Terbouche, A., Ramdane-Terbouche, C., Hauchard, D., & Djebbar, S. (2011). Evaluation of Adsorption Capacities of Humic Acids Extracted from Algerian Soil on Polyaniline for Application yo Remove Pollutants Such As Cd (II), Zn (II) And Ni (II) and Characterization with Cavity Microelectrode. Journal of Environmental Sciences, 23 (7), 1095-1103. https://doi.org/10.1016/S1001-0742(10)60521-9
  • Verma, R. K., Sankhla, M. S., Jadhav, E. B., Parihar, K., & Awasthi, K. K. (2022). Phytoremediation of heavy metals extracted from soil and aquatic environments: Current advances as well as emerging trends, Biointerface Research in Applied Chemistry, 12, (4), 5486 – 5509. https://doi.org/10.33263/BRIAC124.
  • Wang, T., Su, D., Li, X., Wang, X., & He, Z. (2021a). Adsorption Behavior of Phenanthrene in Soil Amended with Modified Loofah Sponge, Journal of Cleaner Production, 298, 126845. https://doi.org/10.1016/j.jclepro.2021.126845
  • Wang, W., Zhang, X., Zhang, Y., Mi, X., Wang, R., & Shi, H. et al. (2021b). Adsorption of Emerging Sodium P-Perfluorous Nonenoxybenzene Sulfonate (OBS) onto Soils: Kinetics, Isotherms and Mechanisms, Pedosphere, 31 (4), 596-605. https://doi.org/10.1016/S1002-0160(21)60005-X
  • Xie, H., Chen, Y., Lou, Z., Zhan, L., Ke, H., Tang, X., & Jin, A., (2011). An Analytical Solution to Contaminant Diffusion in Semi-Infinite Clayey Soils with Piecewise Linear Adsorption, Chemosphere, 85 (8), 1248-1255. https://doi.org/10.1016/j.chemosphere.2011.07.019
  • Yang, X., Liu, L., Tan, W., Liu, C., Dang, Z., & Qiu, G. (2020). Remediation of Heavy Metal Contaminated Soils by Organic Acid Extraction and Electrochemical Adsorption, Environmental Pollution, 264, 114745. https://doi.org/10.1016/j.envpol.2020.114745
  • Zhang, Y., Huang, F., Wang, L., Guan, R., Yu, H., & Wang, L. et al. (2021). Facilitating Effect of Heavy Metals on Di(2-Ethylhexyl) Phthalate Adsorption in Soil: New Evidence from Adsorption Experiment Data and Quantum Chemical Simulation, Science of The Total Environment, 772, 144980. https://doi.org/10.1016/j.scitotenv.2021.144980.

Year 2022, Volume 11, Issue 1, 35 - 42, 27.07.2022
https://doi.org/10.21657/soilst.1072005

Abstract

References

  • Ahmad, R., & Rahman, A. (2009). Sorption characteristics of atrazine and imazethapyr in soils of New Zealand importance of independently determined sorption data. Journal Agricalture and Food Chemistry, 57(22), 10866–10875. https://doi.org/10.1021/jf901365j
  • Alvarez, J. M., Almendros, P., & Gonzalez, D. (2009). Residual Effects of Natural Zn Chelates on Navy Bean Response, Zn Leaching and Soil Zn Status, Plant and Soil, 317, 277-291. https://doi.org/10.1007/s11104-008-9808-9
  • Appenroth, K. J. (2010). Definition of Heavy Metals and Their Role in Biological Systems: Soil Heavy Metals, Springer Heidelberg, Berlin. https://doi.org/10.1007/978-3-642-02436-8_2
  • Borja, J., Taleon, D. M., Auresenia, J., & Gallardo, S. (2005). Polychlorinated Biphenyls and Their Biodegradation, Process Biochemistry, 40, 1999- 2013. https://doi.org/10.1016/j.procbio.2004.08.006
  • Cabral, L., Soares, C. R., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular Mycorrhizal Fungi in Phytoremediation of Contaminated Areas by Trace Elements: Mechanisms and Major Benefits of Their Applications, World Journal Microbiol Biotechnology, 31, 1655-1664. https://doi.org/10.1007/s11274-015-1918-y
  • Cabrejo, E. & Phillips, E. (2010). In Situ Remediation and Stabilization Technologies for Mercury in Clay Soils, Student Summer Internship Technical Report, DOE-FIU Science & Technology Workforce Development Program, US Department of Energy.
  • Cajthaml, T., Erbanova, P. Sasek, V, & Moeder, M. (2006). Breakdown Products on Metabolic Pathway of Degradation of Benz[A]Anthracene by a Ligninolytic Fungus, Chemosphere, 64, 560-564. https://doi.org/10.1016/j.chemosphere.2005.11.034
  • Dardouri, S., & Sghaier, J. (2018). Adsorption Characteristics of Layered Soil as Delay Barrier of Some Organic Contaminants: Experimental and Numerical Modeling, Environmental Modelling & Software, 110, 95-106. https://doi.org/10.1016/j.envsoft.2018.09.003
  • Fu, L., Li, J., Wang, G., Luan, Y., & Dai, W. (2021). Adsorption Behavior of Organic Pollutants On Microplastics, Ecotoxicology and Environmental Safety, 217, 112207. https://doi.org/10.1016/j.ecoenv.2021.112207
  • Gao, J., Wang, B., Peng, R., Li, Z., Xu, J., Tian, Y., & Yao, Q. (2021). Phytoremediation of Multiple Persistent Pollutants Co-Contaminated Soil by Hhssb Transformed Plant, Environmental Research, 197, 110959. https://doi.org/10.1016/j.envres.2021.110959
  • James, T. K., Ghanizadeh, H., Harrington K. C., & Bolan, N. S. (2019). Effect on Herbicide Adsorption of Organic Forestry Waste Products Used for Soil Remediation, Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54, 5, 407-415. https://doi.org/10.1080/03601234.2019.1574170
  • Jiang, R., Wang, M., & Chen, W. (2018). Characterization of Adsorption and Desorption of Lawn Herbicide Siduron in Heavy Metal Contaminated Soils, Chemosphere, 204, 483-491. https://doi.org/10.1016/j.chemosphere.2018.04.045
  • Jones, D. L., Edwards-Jones, G., & Murphy, D. V. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology and Biochemistry, 43(4), 804–813. https://doi.org/10.1016/j.soilbio.2010.12.015
  • Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165, 4, 277–304.
  • Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of Volatile Selenium Compounds by Plants. Collection Procedures and Preliminary Observations, J. Agricaltural. Food Chemistry., 14,( 6), 638–640. https://doi.org/10.1021/jf60148a027
  • Lin, H., Chuang, T., Yang, P., Guo, L., & Wang, S. (2021). Adsorption and Desorption of Thallium(I) in Soils: The Predominant Contribution by Clay Minerals, Applied Clay Science, 205, 106063. https://doi.org/10.1016/j.clay.2021.106063
  • Navia, R., Fuentes, B., Lorber, K., Mora, M., & Diez, M. (2005). In-series Columns Adsorption Performance of Kraft Mill Wastewater Pollutants onto Volcanic Soil, Chemosphere, 60 (7), 870-878. https://doi.org/10.1016/j.chemosphere.2005.01.036
  • Shi, Z., Zhang, F., & Wang, C. (2018). Adsorption of phenanthrene by earthworms - A Pathway for Understanding the Fate of Hydrophobic Organic Contaminants in Soil-Earthworm Systems, Journal of Environmental Management, 212, 115-120. https://doi.org/10.1016/j.jenvman.2018.01.079
  • Smaranda, C., Popescu, M., Bulgariu, D., Măluţan, T., & Gavrilescu, M. (2017). Adsorption of organic pollutants onto a Romanian soil: Column dynamics and transport, Process Safety and Environmental Protection, 108, 108-120. https://doi.org/10.1016/j.psep.2016.06.027
  • Terbouche, A., Ramdane-Terbouche, C., Hauchard, D., & Djebbar, S. (2011). Evaluation of Adsorption Capacities of Humic Acids Extracted from Algerian Soil on Polyaniline for Application yo Remove Pollutants Such As Cd (II), Zn (II) And Ni (II) and Characterization with Cavity Microelectrode. Journal of Environmental Sciences, 23 (7), 1095-1103. https://doi.org/10.1016/S1001-0742(10)60521-9
  • Verma, R. K., Sankhla, M. S., Jadhav, E. B., Parihar, K., & Awasthi, K. K. (2022). Phytoremediation of heavy metals extracted from soil and aquatic environments: Current advances as well as emerging trends, Biointerface Research in Applied Chemistry, 12, (4), 5486 – 5509. https://doi.org/10.33263/BRIAC124.
  • Wang, T., Su, D., Li, X., Wang, X., & He, Z. (2021a). Adsorption Behavior of Phenanthrene in Soil Amended with Modified Loofah Sponge, Journal of Cleaner Production, 298, 126845. https://doi.org/10.1016/j.jclepro.2021.126845
  • Wang, W., Zhang, X., Zhang, Y., Mi, X., Wang, R., & Shi, H. et al. (2021b). Adsorption of Emerging Sodium P-Perfluorous Nonenoxybenzene Sulfonate (OBS) onto Soils: Kinetics, Isotherms and Mechanisms, Pedosphere, 31 (4), 596-605. https://doi.org/10.1016/S1002-0160(21)60005-X
  • Xie, H., Chen, Y., Lou, Z., Zhan, L., Ke, H., Tang, X., & Jin, A., (2011). An Analytical Solution to Contaminant Diffusion in Semi-Infinite Clayey Soils with Piecewise Linear Adsorption, Chemosphere, 85 (8), 1248-1255. https://doi.org/10.1016/j.chemosphere.2011.07.019
  • Yang, X., Liu, L., Tan, W., Liu, C., Dang, Z., & Qiu, G. (2020). Remediation of Heavy Metal Contaminated Soils by Organic Acid Extraction and Electrochemical Adsorption, Environmental Pollution, 264, 114745. https://doi.org/10.1016/j.envpol.2020.114745
  • Zhang, Y., Huang, F., Wang, L., Guan, R., Yu, H., & Wang, L. et al. (2021). Facilitating Effect of Heavy Metals on Di(2-Ethylhexyl) Phthalate Adsorption in Soil: New Evidence from Adsorption Experiment Data and Quantum Chemical Simulation, Science of The Total Environment, 772, 144980. https://doi.org/10.1016/j.scitotenv.2021.144980.

Details

Primary Language English
Subjects Agriculture
Journal Section Reviews
Authors

Shadan Rashid ABUBAKER>
HARRAN UNIVERSITY
0000-0001-6666-2064
Iraq


Ayşe Dilek ATASOY> (Primary Author)
HARRAN ÜNİVERSİTESİ
0000-0002-8689-7300
Türkiye

Publication Date July 27, 2022
Published in Issue Year 2022, Volume 11, Issue 1

Cite

APA Abubaker, S. R. & Atasoy, A. D. (2022). Contaminant removal processes from soil . Soil Studies , 11 (1) , 35-42 . DOI: 10.21657/soilst.1072005