Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 1 - 11, 16.07.2025

Abstract

References

  • Akhtar, M., Yaqub, M., Naeem, A., Ashraf, M., & Hernandez, V. E. (2016). Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils. Journal of the Science of Food and Agriculture, 96(11), 3701-3707.
  • Alam, M. M., & Ladha, J. K. (2004). Optimizing phosphorus fertilization in an intensive vegetable-rice cropping system. Biology and Fertility of Soils, 40, 277-283.
  • Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of soil science and plant nutrition, 12(3), 547-562.
  • Barlog, P., & Grzebisz, W. (2004). Effect of timing and nitrogen fertilizer application on winter oilseed rape, II. Nitrogen uptake dynamics and fertilizer efficiency. J Agron Crop Sci. 190, 314-323.
  • Bertrand, I., Hinsinger, P., Jaillard, B., & Arvieu, J. C. (1999). Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant and Soil, 211(1), 111-119.
  • Bertrand, I., McLaughlin, M. J., Holloway, R. E., Armstrong, R. D., & McBeath, T. (2006). Changes in P bioavailability induced by the application of liquid and powder sources of P, N and Zn fertilizers in alkaline soils. Nutrient Cycling in Agroecosystems, 74(1), 27-40.
  • Bouyocous, G. D. (1951). A Recalibration of the Hydrometer Method for Making Mechanic Analysis of the Soil. Agronomy Journal 43: 434-438.
  • Bremner, J. M. (1965). Inorganic forms of nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1179-1237.
  • Brentrup, F., & Pallière, C. (2010). Nitrogen use efficiency as an agro-environmental indicator. In Proceedings of the OECD Workshop on Agrienvironmental Indicators, March (pp. 23-26).
  • Bryant‐Schlobohm, R., Dhillon, J., Wehmeyer, G. B., & Raun, W. R. (2020). Wheat grain yield and nitrogen uptake as influenced by fertilizer placement depth. AeroSystems, Geosciences & Environment, 3(1), e20025.
  • Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., & Zhu, Z. L. (2002). Nitrogen losses from fertilizers applied to maize, wheat, and rice in the North China Plain. Nutrient Cycling in Agroecosystems, 63, 187-195.
  • Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: a review. Annals of applied biology, 162(2), 145-173.
  • Carson, P. L. (1980). Recommended potassium test. North Dakota Agricultural Experiment Station Bulletin, (499), 17-18.
  • Clarkson, D. T. (1981). Nutrient interception and transport by root systems. In Physiological Processes Limiting Plant Productivity (Johnson, C.B., editor). 307-330.
  • Degryse, F., Ajiboye, B., Armstrong, R. D., & McLaughlin, M. J. (2013). Sequestration of phosphorus‐binding cations by complexing compounds is not a viable mechanism to increase phosphorus efficiency. Soil Science Society of America Journal, 77(6), 2050-2059.
  • Doydora, S., Hesterberg, D., & Klysubun, W. (2017). Phosphate solubilization from poorly crystalline iron and aluminum hydroxides by AVAIL copolymer. Soil Science Society of America Journal, 81(1), 20-28.
  • Eickhout, B., Bouwman, A. V., & Van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, ecosystems & environment, 116(1-2), 4-14.
  • Erdal, İ. (2021). Bitkilerin Mineral Beslenmesini Etkileyen Bazı Faktörler. Kitap Bölümü. Bölüm.11.
  • Erenoğlu, E., & Dundar, S. (2020). Application of liquid phosphorus fertilizer improves the availability of phosphorus in calcareous soils. Applied Ecology and Environmental Research, 18.
  • Gerten, D., Heck, V., Jägermeyr, J., Bodirsky, B. L., Fetzer, I., Jalava, M., & Schellnhuber H. J. (2020). Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3), 200-208.
  • Gyaneshwar, P., Kumar, G. N., Parekh, L. J. & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant Soil, 245, 83-93.
  • Hashmi, Z. U. H., Khan, M. J., Akhtar, M., Sarwar, T., & Khan, M. J. (2017). Enhancing phosphorus uptake and grain yield of wheat with phosphoric acid application in calcareous soil. Journal of the Science of Food and Agriculture, 97(6), 1733-1739.
  • Hoffmann, C. M., & Kluge-Severin, S. (2011). Growth analysis of autumn and spring sown sugar beet. European journal of agronomy, 34(1), 1-9.
  • Holloway, R. E., Bertrand, I., Frischke, A. J., Brace, D. M., McLaughlin, M. J., & Shepperd, W. (2001). Improving fertiliser efficiency on calcareous and alkaline soils with fluid sources of P, N and Zn. Plant and Soil, 236(2), 209-219.
  • Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant Analysis Handbook. Micro–Macro Publishing. Inc., USA, 213p.
  • Ibrikci, H., Cetin, M., Karnez, E, Kirda, C., Topcu, S., Ryan, J., Oztekin, E., Dingil, M., Korkmaz, K., & Oguz, H. (2012). Spatial and temporal variability of groundwater nitrate concentrations in irrigated Mediterranean agriculture. Communications in Soil Science and Plant Analysis, 43(1-2): 47–59.
  • Jackson, M. L. (1959). Soil chemical analysis. – Englewood Cliffs, New Jersey.
  • Kacar, B. (2016). Physical and chemical soil analysis. Nobel publications and distribution, Ankara, Türkiye. (In Turkish).
  • Karaşahin, M. (2014). The effects of different irrigation methods and plant densities on nitrogen and irrigation water use efficiency in silage corn production. Crop Research, 47(1 & 3): 33-39.
  • Kelly, J., Wojcik, N., & McLaughlin, M. (2004). First Australian fluid fertiliser workshop: proceedings: University of Adelaide, Bonython Hall 21-22 September 2004.
  • Korkmaz, K., Ibrikci, H., Karnez, E., Buyuk, G., Ryan, J., Ulger, A.C, & Oguz, H. (2009. Phosphorus use efficiency of wheat genotypes grown in calcareous soils. Journal of Plant Nutrition, 32(12), 2094-2106.
  • Kulluk, D. A. (2022). Comparison of the Effectiveness of Solid and Liquid Fertilizers Applied to Sugar Beet. PhD Dissertation, Department of Soil Science and Plant Nutrition, Graduate School of Natural Sciences, Selçuk University. (in Turkish).
  • Kusi, N. Y. O., Stevens, W. B., Sintim, H. Y., y Garcia, A. G., & Mesbah, A. O. (2021). Phosphorus fertilization and enhanced efficiency products effects on sugar beet. Industrial Crops and Products, 171, 113887.
  • Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
  • Lombi, E., McLaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2004). Mobility and lability of phosphorus from granular and fluid monoammonium phosphate differs in a calcareous soil. Soil Science Society of America Journal, 68(2), 682-689.
  • Lombi, E., McLaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2005). Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions. Plant and Soil, 269, 25-34.
  • Lynch, J. P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55(5), 493-512.
  • Malnou, C. S., Jaggard, K. W., & Sparkes, D. L. (2006). A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop. European Journal of Agronomy, 25(3), 254-263.
  • McBeath, T. M., Armstrong, R. D., Lombi, E., McLaughlin, M. J., & Holloway, R. E. (2005). Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Research, 43(2), 203-212.
  • McBeath, T. M., McLaughlin, M. J., Armstrong, R. D., Bell, M., Bolland, M. D. A., Conyers, M. K., Holloway, R. E., & Mason, S. (2007). Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilizers in Australian soils. Soil Research, 45(6), 448–458.
  • Melino, V. J., Tester, M. A., & Okamoto, M. (2022). Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen. Current Opinion in Biotechnology, 73, 263-269.
  • Milyutkin, V., Sysoev, V., Blinova, O., Makushin, A., & Prazdnichkova, N. (2021). Improvements in corn production technology using liquid nitrogen fertilizers. In BIO Web of Conferences (Vol. 37, p. 00122). EDP Sciences.
  • Montalvo, Lara., & R. E. (2015). La nulidad de los contratos y su incidencia en el impuesto a la renta (Bachelor's thesis, Quito, 2015).
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Rochette, P., Angers, D. A., Chantigny, M. H., MacDonald, J. D., Gasser, M. O., & Bertrand, N. (2009). Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutrient Cycling in Agroecosystems, 84, 71-80.
  • Schlegel, A. J., Dhuyvetter, K. C., & Havlin, J. L. (2003). Placement of UAN for dryland winter wheat in the Central High Plains. Agronomy Journal, 95(6), 1532-1541.
  • Stevanato, P., Chiodi, C., Broccanello, C., Concheri, G., Biancardi, E., Pavli, O., & Skaracis, G. (2019). Sustainability of the sugar beet crop. Sugar Tech, 21, 703-716.
  • U. S. Salinity Lab. Staff. (1954). Diagnosis and Improvement of Salina and Alkali Soils. Agricultural Handbook, No: 60, U.S.D.A.
  • Van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501.
  • Wang, J., & Chu, G. (2015). Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip‐irrigated calcareous soil. Journal of Plant Nutrition and Soil Science, 178(6), 914-922.
  • Wang, Z., Wang, Z., Ma, L., Lv, X., Meng, Y., & Zhou, Z. (2021). Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. European Journal of Agronomy, 126, 126267.
  • Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, R. K., Jat, S. L., Ram, H., & Jat, M. L. (2017). Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 38(1), 29-40.
  • Zhao, Y., Li, R., Huang, Y., Sun, X., Qin, W., Wei, F., & Ye, Y. (2022). Effects of various phosphorus fertilizers on maize yield and phosphorus uptake in soils with different pH values. Archives of Agronomy and Soil Science, 68(12), 1746-1754.
  • Zhou, M., & Li, Y. (2001). Phosphorus‐sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5), 1404-1412.

Assessment of the Impact of Solid and Liquid Fertilizer Applications on Yield and Yield Components in Cotton (Gossypium hirsutum L.)

Year 2025, Volume: 14 Issue: 1, 1 - 11, 16.07.2025

Abstract

This research aimed to compare the effects of liquid fertilizers on cotton yield and specific yield components relative to traditional solid fertilizers. The study employed 20-20-0, 15-15-15 and Di Ammonium Phosphate- DAP (18-46-0) fertilizers for base fertilization, with solid urea (46%) as top dressing. Liquid fertilizers, including orthophosphate and polyphosphate-based liquid base fertilizers (liquid 20-20-0, liquid 15-15-15 and liquid DAP) were developed and applied. Urea ammonium nitrate (UAN-32% N) was used for all top dressing in treatments. The experiments were conducted at the Eastern Mediterranean Agricultural Research Institute in Doğankent, following a randomized block trial design with three replications. Three separate field trials were established, each corresponding to a different compound fertilizer: 20-20-0, 15-15-15 and DAP. Within each trial, five treatments were applied, using the cotton variety "Karizma" consistently. The results indicated that liquid fertilizers containing phosphorus, particularly in the form of polyphosphate, yielded higher values for the examined properties of cotton cultivation when used for base fertilization. Although statistically insignificant, compared to conventional fertilizer applications (solid 20-20 + Urea, solid 15-15-15 + Urea, solid DAP + Urea), the use of liquid fertilizers with polyphosphate (liquid 20-20 + UAN, liquid 15-15-15 + UAN, liquid DAP + UAN) led to yield increases of 16.5%, 25.1% and 9.9%, respectively. Additionally, in the trials conducted, liquid UAN fertilizer proved to be more effective in enhancing cotton yields than solid urea fertilizer when used for top dressing.

References

  • Akhtar, M., Yaqub, M., Naeem, A., Ashraf, M., & Hernandez, V. E. (2016). Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils. Journal of the Science of Food and Agriculture, 96(11), 3701-3707.
  • Alam, M. M., & Ladha, J. K. (2004). Optimizing phosphorus fertilization in an intensive vegetable-rice cropping system. Biology and Fertility of Soils, 40, 277-283.
  • Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of soil science and plant nutrition, 12(3), 547-562.
  • Barlog, P., & Grzebisz, W. (2004). Effect of timing and nitrogen fertilizer application on winter oilseed rape, II. Nitrogen uptake dynamics and fertilizer efficiency. J Agron Crop Sci. 190, 314-323.
  • Bertrand, I., Hinsinger, P., Jaillard, B., & Arvieu, J. C. (1999). Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant and Soil, 211(1), 111-119.
  • Bertrand, I., McLaughlin, M. J., Holloway, R. E., Armstrong, R. D., & McBeath, T. (2006). Changes in P bioavailability induced by the application of liquid and powder sources of P, N and Zn fertilizers in alkaline soils. Nutrient Cycling in Agroecosystems, 74(1), 27-40.
  • Bouyocous, G. D. (1951). A Recalibration of the Hydrometer Method for Making Mechanic Analysis of the Soil. Agronomy Journal 43: 434-438.
  • Bremner, J. M. (1965). Inorganic forms of nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1179-1237.
  • Brentrup, F., & Pallière, C. (2010). Nitrogen use efficiency as an agro-environmental indicator. In Proceedings of the OECD Workshop on Agrienvironmental Indicators, March (pp. 23-26).
  • Bryant‐Schlobohm, R., Dhillon, J., Wehmeyer, G. B., & Raun, W. R. (2020). Wheat grain yield and nitrogen uptake as influenced by fertilizer placement depth. AeroSystems, Geosciences & Environment, 3(1), e20025.
  • Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., & Zhu, Z. L. (2002). Nitrogen losses from fertilizers applied to maize, wheat, and rice in the North China Plain. Nutrient Cycling in Agroecosystems, 63, 187-195.
  • Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: a review. Annals of applied biology, 162(2), 145-173.
  • Carson, P. L. (1980). Recommended potassium test. North Dakota Agricultural Experiment Station Bulletin, (499), 17-18.
  • Clarkson, D. T. (1981). Nutrient interception and transport by root systems. In Physiological Processes Limiting Plant Productivity (Johnson, C.B., editor). 307-330.
  • Degryse, F., Ajiboye, B., Armstrong, R. D., & McLaughlin, M. J. (2013). Sequestration of phosphorus‐binding cations by complexing compounds is not a viable mechanism to increase phosphorus efficiency. Soil Science Society of America Journal, 77(6), 2050-2059.
  • Doydora, S., Hesterberg, D., & Klysubun, W. (2017). Phosphate solubilization from poorly crystalline iron and aluminum hydroxides by AVAIL copolymer. Soil Science Society of America Journal, 81(1), 20-28.
  • Eickhout, B., Bouwman, A. V., & Van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, ecosystems & environment, 116(1-2), 4-14.
  • Erdal, İ. (2021). Bitkilerin Mineral Beslenmesini Etkileyen Bazı Faktörler. Kitap Bölümü. Bölüm.11.
  • Erenoğlu, E., & Dundar, S. (2020). Application of liquid phosphorus fertilizer improves the availability of phosphorus in calcareous soils. Applied Ecology and Environmental Research, 18.
  • Gerten, D., Heck, V., Jägermeyr, J., Bodirsky, B. L., Fetzer, I., Jalava, M., & Schellnhuber H. J. (2020). Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3), 200-208.
  • Gyaneshwar, P., Kumar, G. N., Parekh, L. J. & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant Soil, 245, 83-93.
  • Hashmi, Z. U. H., Khan, M. J., Akhtar, M., Sarwar, T., & Khan, M. J. (2017). Enhancing phosphorus uptake and grain yield of wheat with phosphoric acid application in calcareous soil. Journal of the Science of Food and Agriculture, 97(6), 1733-1739.
  • Hoffmann, C. M., & Kluge-Severin, S. (2011). Growth analysis of autumn and spring sown sugar beet. European journal of agronomy, 34(1), 1-9.
  • Holloway, R. E., Bertrand, I., Frischke, A. J., Brace, D. M., McLaughlin, M. J., & Shepperd, W. (2001). Improving fertiliser efficiency on calcareous and alkaline soils with fluid sources of P, N and Zn. Plant and Soil, 236(2), 209-219.
  • Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant Analysis Handbook. Micro–Macro Publishing. Inc., USA, 213p.
  • Ibrikci, H., Cetin, M., Karnez, E, Kirda, C., Topcu, S., Ryan, J., Oztekin, E., Dingil, M., Korkmaz, K., & Oguz, H. (2012). Spatial and temporal variability of groundwater nitrate concentrations in irrigated Mediterranean agriculture. Communications in Soil Science and Plant Analysis, 43(1-2): 47–59.
  • Jackson, M. L. (1959). Soil chemical analysis. – Englewood Cliffs, New Jersey.
  • Kacar, B. (2016). Physical and chemical soil analysis. Nobel publications and distribution, Ankara, Türkiye. (In Turkish).
  • Karaşahin, M. (2014). The effects of different irrigation methods and plant densities on nitrogen and irrigation water use efficiency in silage corn production. Crop Research, 47(1 & 3): 33-39.
  • Kelly, J., Wojcik, N., & McLaughlin, M. (2004). First Australian fluid fertiliser workshop: proceedings: University of Adelaide, Bonython Hall 21-22 September 2004.
  • Korkmaz, K., Ibrikci, H., Karnez, E., Buyuk, G., Ryan, J., Ulger, A.C, & Oguz, H. (2009. Phosphorus use efficiency of wheat genotypes grown in calcareous soils. Journal of Plant Nutrition, 32(12), 2094-2106.
  • Kulluk, D. A. (2022). Comparison of the Effectiveness of Solid and Liquid Fertilizers Applied to Sugar Beet. PhD Dissertation, Department of Soil Science and Plant Nutrition, Graduate School of Natural Sciences, Selçuk University. (in Turkish).
  • Kusi, N. Y. O., Stevens, W. B., Sintim, H. Y., y Garcia, A. G., & Mesbah, A. O. (2021). Phosphorus fertilization and enhanced efficiency products effects on sugar beet. Industrial Crops and Products, 171, 113887.
  • Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
  • Lombi, E., McLaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2004). Mobility and lability of phosphorus from granular and fluid monoammonium phosphate differs in a calcareous soil. Soil Science Society of America Journal, 68(2), 682-689.
  • Lombi, E., McLaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2005). Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions. Plant and Soil, 269, 25-34.
  • Lynch, J. P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55(5), 493-512.
  • Malnou, C. S., Jaggard, K. W., & Sparkes, D. L. (2006). A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop. European Journal of Agronomy, 25(3), 254-263.
  • McBeath, T. M., Armstrong, R. D., Lombi, E., McLaughlin, M. J., & Holloway, R. E. (2005). Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Research, 43(2), 203-212.
  • McBeath, T. M., McLaughlin, M. J., Armstrong, R. D., Bell, M., Bolland, M. D. A., Conyers, M. K., Holloway, R. E., & Mason, S. (2007). Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilizers in Australian soils. Soil Research, 45(6), 448–458.
  • Melino, V. J., Tester, M. A., & Okamoto, M. (2022). Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen. Current Opinion in Biotechnology, 73, 263-269.
  • Milyutkin, V., Sysoev, V., Blinova, O., Makushin, A., & Prazdnichkova, N. (2021). Improvements in corn production technology using liquid nitrogen fertilizers. In BIO Web of Conferences (Vol. 37, p. 00122). EDP Sciences.
  • Montalvo, Lara., & R. E. (2015). La nulidad de los contratos y su incidencia en el impuesto a la renta (Bachelor's thesis, Quito, 2015).
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Rochette, P., Angers, D. A., Chantigny, M. H., MacDonald, J. D., Gasser, M. O., & Bertrand, N. (2009). Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutrient Cycling in Agroecosystems, 84, 71-80.
  • Schlegel, A. J., Dhuyvetter, K. C., & Havlin, J. L. (2003). Placement of UAN for dryland winter wheat in the Central High Plains. Agronomy Journal, 95(6), 1532-1541.
  • Stevanato, P., Chiodi, C., Broccanello, C., Concheri, G., Biancardi, E., Pavli, O., & Skaracis, G. (2019). Sustainability of the sugar beet crop. Sugar Tech, 21, 703-716.
  • U. S. Salinity Lab. Staff. (1954). Diagnosis and Improvement of Salina and Alkali Soils. Agricultural Handbook, No: 60, U.S.D.A.
  • Van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501.
  • Wang, J., & Chu, G. (2015). Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip‐irrigated calcareous soil. Journal of Plant Nutrition and Soil Science, 178(6), 914-922.
  • Wang, Z., Wang, Z., Ma, L., Lv, X., Meng, Y., & Zhou, Z. (2021). Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. European Journal of Agronomy, 126, 126267.
  • Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, R. K., Jat, S. L., Ram, H., & Jat, M. L. (2017). Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 38(1), 29-40.
  • Zhao, Y., Li, R., Huang, Y., Sun, X., Qin, W., Wei, F., & Ye, Y. (2022). Effects of various phosphorus fertilizers on maize yield and phosphorus uptake in soils with different pH values. Archives of Agronomy and Soil Science, 68(12), 1746-1754.
  • Zhou, M., & Li, Y. (2001). Phosphorus‐sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5), 1404-1412.
There are 54 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Hatun Barut 0000-0003-2482-6715

Sait Aykanat 0000-0002-5690-408X

Selma Kaya 0009-0004-4908-8741

Fatma Gökmen Yılmaz 0000-0001-8523-1825

Sait Gezgin 0000-0002-3795-4575

Publication Date July 16, 2025
Submission Date February 18, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Barut, H., Aykanat, S., Kaya, S., Gökmen Yılmaz, F., et al. (2025). Assessment of the Impact of Solid and Liquid Fertilizer Applications on Yield and Yield Components in Cotton (Gossypium hirsutum L.). Soil Studies, 14(1), 1-11.