Research Article
BibTex RIS Cite

2021-LGS MATEMATİK ALT TESTİ SORULARININ ÖĞRENME ALANLARI VE YENİLENMİŞ BLOOM TAKSONOMİSİNE GÖRE İNCELENMESİ

Year 2022, Issue: 90, 459 - 476, 28.03.2022

Abstract

İçinde bulunduğumuz yüzyılda her alanda yaşanan hızlı değişim, eğitim alanında da
kendini hissettirmiş, bizlere yenilenmenin ve değişimin zorunlu olduğunu göstermiştir.
Belli sınıf düzeylerinde gerçekleştirilen ve belli yeterlilikleri ölçmeyi hedefleyen PISA,
TIMMS, PIRLS ve TALIS gibi uluslararası düzeyde gerçekleştirilen sınavlardan elde edilen sonuçların, ülkelerin eğitim sistemlerindeki eksikliklerini yapılandırmalarına destek
sağladığı bilinmektedir. Bu sınavlarda temel amaçlardan belki de en önemlisi, öğrencilerin okulda edinmiş oldukları bilgi ve becerilerini günlük yaşamlarına ne ölçüde aktarabildiklerini ölçmektir. Amacı ortaokul sekizinci sınıf düzeyindeki öğrencileri ilgi ve
yeteneklerine göre bir sonraki öğretim seviyesine hazırlamak olan Ortaöğretim Kurumlarına İlişkin Merkezi Sınav sorularında da bu doğrultuda gerçekleştirilen yapılanmalar
söz konusudur. Bu çalışmada, 2021 yılı Haziran ayında Millî Eğitim Bakanlığı tarafından
gerçekleştirilmiş olan Liselere Geçiş Sistemi (LGS) sınavı matematik alt testinde yer alan
yirmi adet sorunun ortaokul Matematik Dersi Öğretim Programı’nda yer alan öğrenme
alanları ve yenilenmiş Bloom taksonomisi bilgi boyutu ve bilişsel süreç boyutuna göre
incelenmesi amaçlanmıştır. Bu amaç doğrultusunda Ölçme, Değerlendirme ve Sınav
Hizmetleri Genel Müdürlüğü resmi internet adresinden temin edilen 2021-LGS merkezi
sınavı A-B kitapçıklarında yer alan matematik alt testi soruları araştırma dokümanlarının kaynağını teşkil etmiştir. Araştırmacılar ve uzmanlar tarafından doküman incelemesi
yöntemi kullanılarak elde edilen araştırma verilerinin analizinde betimsel istatistikten
yararlanılmıştır. Öğrenme alanları ve yenilenmiş Bloom taksonomisi boyutlarına ait frekans ve yüzde değerleri tablolara aktarılarak yorumlanmıştır. Çalışmanın veri analizi
sonucunda elde edilen bulgulara göre en fazla Sayılar ve İşlemler öğrenme alanında soru
olduğu tespit edilmiştir. Ayrıca soruların sıklıkla yenilenmiş Bloom taksonomisi bilişsel
süreç boyutunda uygulama, analiz ve değerlendirme basamağında, bilgi boyutunda ise
işlemsel bilgi boyutunda yer aldığı belirlenmiştir. Çalışmanın ortaya koyduğu bu sonuçlar çerçevesinde paydaşlara öneriler sunulmuştur.

References

  • Altun, H. ve Doğan, M. (2018). TEOG sınavı matematik sorularının yenilenmiş Bloom taksonomisine göre incelenmesi. Sosyal Bilimler Dergisi, 5 (19), 439-447.
  • Beyendi, S. (2018). 2018 LGS matematik sorularının analizi. Akademik Sosyal Araştırmalar Dergisi,6 (80), 456-475.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9 (2), 27-40. Çetin, B. Ş. (2019). Matematik öğretmenlerinin 2018 LGS sistemine ilişkin görüşlerinin incelenmesi. (Yayınlanmamış yüksek lisans tezi), Sakarya: Sakarya Üniversitesi.
  • Dalak, O. (2015). TEOG sınav soruları ile 8. sınıf öğretim programlarındaki ilgili kazanımların yenilenmiş Bloom taksonomisine göre incelenmesi. (Yayınlanmamış yüksek lisans tezi), Gaziantep: Gaziantep Üniversitesi.
  • Dönmez, S. M. K., ve Dede, Y. (2020). Ortaöğretime geçiş sınavları matematik soruları- nın matematiksel yeterlikler açısından incelenmesi. Başkent University Journal of Education, 7 (2), 363-374.
  • Ekinci, O. ve Bal, P. A. (2019). 2018 yılı liseye geçiş sınavı (LGS) matematik sorularının öğrenme alanları ve yenilenmiş Bloom taksonomisi bağlamında değerlendirilmesi, Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 7 (3), 9-18.
  • Güler, M., Arslan, Z. ve Çelik, D. (2019). 2018 liselere giriş sınavına ilişkin matematik öğretmenlerinin görüşleri. YYÜ Eğitim Fakültesi Dergisi, 16 (1), 337-363.
  • Güler, G., Özdemir, E. ve Dikici, R. (2012). İlköğretim matematik öğretmenlerinin sınav soruları ile SBS matematik sorularının Bloom taksonomosine göre karşılaştırmalı analizi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 14 (1), 41-60.
  • İncikabı, L., Erkoç, Y. ve Demirci, S. (2020). 2018 sonrası liseye geçiş sınavlarındaki matematik sorularının incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi,21 (2), 1094-1121.
  • Kablan, Z. ve Bozkuş, F. (2021). Liselere giriş sınavı matematik problemlerine ilişkin öğretmen ve öğrenci görüşleri. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 17 (1), 211-231.
  • Karaman, M. ve Bindak, R. (2017). İlköğretim matematik öğretmenlerinin sınav soruları ile TEOG matematik sorularının yenilenmiş Bloom taksonomisine göre analizi. Current Research in Education, 3 (2), 51-65.
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook (Second edition). Thousand Oaks, CA: Sage.
  • Millî Eğitim Bakanlığı (MEB). (2018). Millî Eğitim Bakanlığı ortaöğretime geçiş yönergesi. Erişim adresi: https://www.meb.gov.tr/meb_iys_dosyalar/2018_ 03/26191912_yonerge.pdf adresinden 15 Ağustos 2021 tarihinde alınmıştır.
  • Millî Eğitim Bakanlığı (MEB). (2021). Ölçme, Değerlendirme ve Sınav Hizmetleri Müdürlüğü. Erişim adresi: https://odsgm.meb.gov.tr/ adresinden 15 Ağustos 2021 tarihinde alınmıştır.
  • Özkan, U. B. (2019). Eğitim bilimleri araştırmaları için doküman inceleme yöntemi. Ankara: Pegem Akademi.
  • Polat, S. (2020). Liselere giriş sistemi merkezi sınavı matematik alt testinin kapsam geçerliğinin belirlenmesi. (Yayımlanmamış yüksek lisans tezi), Ankara: Ankara Üniversitesi.
  • Şıvkın, S., Aksoy, V. C. ve Gür Erdoğan, D. (2020). LGS‘ de sorulan PISA tarzı matematik sorularını doğru cevaplama ile okuduğunu anlama arasındaki ilişkinin öğret- men görüşlerine göre değerlendirilmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 20 (2), 148-159.
  • Topçu, E. (2017). TEOG tarih sorularının yenilenmiş Bloom taksonomisine göre analizi. Uluslararası Türk Eğitim Bilimleri Dergisi, 5 (9), 321-335.
  • Ulutaş, B. (2017). Doküman analizi. F. N. Seggie ve Y. Bayyurt (Ed.), Nitel araştırma yöntem teknik analiz ve yaklaşımları. (279-297). Ankara: Anı Yayıncılık.
  • Ünal, C. ve Eroğlu, D. (2021). LGS’de yer alan matematik sorularının ortaokul matematik öğretim programının çeşitli bileşenleriyle uyumluluğunun incelenmesi. Meh- met Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, (60), 510-536.
  • Yakalı, D. (2016). TEOG sınavlarındaki matematik sorularının yenilenmiş Bloom taksonomisi ve öğretim programına göre değerlendirilmesi. (Yayımlanmamış yüksek lisans tezi), Aydın: Adnan Menderes Üniversitesi.
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Year 2022, Issue: 90, 459 - 476, 28.03.2022

Abstract

References

  • Altun, H. ve Doğan, M. (2018). TEOG sınavı matematik sorularının yenilenmiş Bloom taksonomisine göre incelenmesi. Sosyal Bilimler Dergisi, 5 (19), 439-447.
  • Beyendi, S. (2018). 2018 LGS matematik sorularının analizi. Akademik Sosyal Araştırmalar Dergisi,6 (80), 456-475.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9 (2), 27-40. Çetin, B. Ş. (2019). Matematik öğretmenlerinin 2018 LGS sistemine ilişkin görüşlerinin incelenmesi. (Yayınlanmamış yüksek lisans tezi), Sakarya: Sakarya Üniversitesi.
  • Dalak, O. (2015). TEOG sınav soruları ile 8. sınıf öğretim programlarındaki ilgili kazanımların yenilenmiş Bloom taksonomisine göre incelenmesi. (Yayınlanmamış yüksek lisans tezi), Gaziantep: Gaziantep Üniversitesi.
  • Dönmez, S. M. K., ve Dede, Y. (2020). Ortaöğretime geçiş sınavları matematik soruları- nın matematiksel yeterlikler açısından incelenmesi. Başkent University Journal of Education, 7 (2), 363-374.
  • Ekinci, O. ve Bal, P. A. (2019). 2018 yılı liseye geçiş sınavı (LGS) matematik sorularının öğrenme alanları ve yenilenmiş Bloom taksonomisi bağlamında değerlendirilmesi, Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 7 (3), 9-18.
  • Güler, M., Arslan, Z. ve Çelik, D. (2019). 2018 liselere giriş sınavına ilişkin matematik öğretmenlerinin görüşleri. YYÜ Eğitim Fakültesi Dergisi, 16 (1), 337-363.
  • Güler, G., Özdemir, E. ve Dikici, R. (2012). İlköğretim matematik öğretmenlerinin sınav soruları ile SBS matematik sorularının Bloom taksonomosine göre karşılaştırmalı analizi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 14 (1), 41-60.
  • İncikabı, L., Erkoç, Y. ve Demirci, S. (2020). 2018 sonrası liseye geçiş sınavlarındaki matematik sorularının incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi,21 (2), 1094-1121.
  • Kablan, Z. ve Bozkuş, F. (2021). Liselere giriş sınavı matematik problemlerine ilişkin öğretmen ve öğrenci görüşleri. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 17 (1), 211-231.
  • Karaman, M. ve Bindak, R. (2017). İlköğretim matematik öğretmenlerinin sınav soruları ile TEOG matematik sorularının yenilenmiş Bloom taksonomisine göre analizi. Current Research in Education, 3 (2), 51-65.
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook (Second edition). Thousand Oaks, CA: Sage.
  • Millî Eğitim Bakanlığı (MEB). (2018). Millî Eğitim Bakanlığı ortaöğretime geçiş yönergesi. Erişim adresi: https://www.meb.gov.tr/meb_iys_dosyalar/2018_ 03/26191912_yonerge.pdf adresinden 15 Ağustos 2021 tarihinde alınmıştır.
  • Millî Eğitim Bakanlığı (MEB). (2021). Ölçme, Değerlendirme ve Sınav Hizmetleri Müdürlüğü. Erişim adresi: https://odsgm.meb.gov.tr/ adresinden 15 Ağustos 2021 tarihinde alınmıştır.
  • Özkan, U. B. (2019). Eğitim bilimleri araştırmaları için doküman inceleme yöntemi. Ankara: Pegem Akademi.
  • Polat, S. (2020). Liselere giriş sistemi merkezi sınavı matematik alt testinin kapsam geçerliğinin belirlenmesi. (Yayımlanmamış yüksek lisans tezi), Ankara: Ankara Üniversitesi.
  • Şıvkın, S., Aksoy, V. C. ve Gür Erdoğan, D. (2020). LGS‘ de sorulan PISA tarzı matematik sorularını doğru cevaplama ile okuduğunu anlama arasındaki ilişkinin öğret- men görüşlerine göre değerlendirilmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 20 (2), 148-159.
  • Topçu, E. (2017). TEOG tarih sorularının yenilenmiş Bloom taksonomisine göre analizi. Uluslararası Türk Eğitim Bilimleri Dergisi, 5 (9), 321-335.
  • Ulutaş, B. (2017). Doküman analizi. F. N. Seggie ve Y. Bayyurt (Ed.), Nitel araştırma yöntem teknik analiz ve yaklaşımları. (279-297). Ankara: Anı Yayıncılık.
  • Ünal, C. ve Eroğlu, D. (2021). LGS’de yer alan matematik sorularının ortaokul matematik öğretim programının çeşitli bileşenleriyle uyumluluğunun incelenmesi. Meh- met Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, (60), 510-536.
  • Yakalı, D. (2016). TEOG sınavlarındaki matematik sorularının yenilenmiş Bloom taksonomisi ve öğretim programına göre değerlendirilmesi. (Yayımlanmamış yüksek lisans tezi), Aydın: Adnan Menderes Üniversitesi.
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Uğur Yılmaz This is me

Mevlüde Doğan This is me

Publication Date March 28, 2022
Published in Issue Year 2022 Issue: 90

Cite

APA Yılmaz, U., & Doğan, M. (2022). 2021-LGS MATEMATİK ALT TESTİ SORULARININ ÖĞRENME ALANLARI VE YENİLENMİŞ BLOOM TAKSONOMİSİNE GÖRE İNCELENMESİ. EKEV Akademi Dergisi(90), 459-476.