Theoretical Article
BibTex RIS Cite

DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS

Year 2022, Volume: 22 Issue: 2, 15 - 22, 30.12.2022

Abstract

Based on the correlation of GPS data and hypocenters of strong earthquakes, the boundaries were identified and the depths of occurrence of active tectonic blocks in the areas of the southeastern subsidence of the Greater Caucasus, the Kura depression and the Talysh zone of Azerbaijan were determined. It has been established that the velocity field of GPS observations on the territory of Azerbaijan clearly illustrates the predominance of the movement of the earth's crust in the N-NE direction relative to Eurasia. The most clearly manifested feature of the velocity field is a decrease in velocity at observation points located on the territory of the Greater Caucasus. GPS observation points located along the MCT show a decrease in speed in an easterly direction. N-NE movement of the earth's surface is interpreted as one of the reasons for the accumulation of stresses on this thrust. In addition, there is a tendency for horizontal movement within the Kura depression and the Lesser Caucasus, where the speed increases from west to east along the strike of the mountain range. In addition, the analysis of the azimuth angles showed an increase at the stations located on the Absheron Peninsula. Based on the correlation of GPS data and hypocenters of strong earthquakes, in the GubaGusar region in the direction NW-SE at a depth of 5 to 40 km, a block with velocities of 5.8 mm/g and a length of 55 km is distinguished. On the depth profile of Zakatala-Gobustan (NW-SE) in the southeast direction at an epicentral distance of 20 to 250 km, a gradual subsidence of the tectonic block is observed with velocities of 6.25 mm/g from a depth of 20 to 55 km. In the zone of the West Caspian fault at depths from 5 to 35 km, a block boundary is distinguished with velocities of 7.25 mm/y. On the eastern side of this block, a block is distinguished at depths of 10–25 km with values of 9 mm/y.

References

  • 1. Altamimi Z., Rebischung P., Métivier L., Collilieux X. ITRF2014: A new release of the International Terrestrial Reference Frame modelling nonlinear station motions // Journal of Geophysical Research. Solid Earth. 2016. V. 121. P. 6109–6131. doi:10.1002/2016JB013098
  • 2. Ana Paula Marins Chiaradia, Hélio Koiti Kuga,and Antonio Fernando Bertachini de Almeida Prado Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS // Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites, 2013, https://doi.org/10.1155/2013/530516
  • 3. Beutler G., Brockmann E., Gurtner W., Hugentobler U., Mervart L., Rothacher M., Verdun A. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results // Manuscripta Geodaetica. – 1994. – V. 19. – P. 367–386.
  • 4. DeMets C., Mattioli G., Jansma P., D.Rogers R., Tenorio C., L. Turner H. GPS-geodetic measurements from Honduras and Nicaragua Present motion and deformation of the Caribbean plate: Constraints from new // Geological Society of America Special Papers. 2007. V. 428. Р. 21–36. doi:10.1130/2007.2428(02).
  • 5. Devi M., Barbara A. Total electron content and anomalous appearance of GPS-satellites as pointers to epicentre identification of major Japan earthquake of 2011 // Positioning. 2012. V. 3, № 1. Р. 7–12. doi:10.4236/pos.2012.31002.
  • 6. Herring T.A. GLOBK: Global Kalman filter VLBI and GPS analysis program version 4.1. Cambridge, MA: Massachu setts Institute of Technology. 2004
  • 7. King R.W., Herring T.A., Floyd M.A., McClusky S.C. GAMIT/GLOBK Overview [Электронный ресурс].  URL: http://geoweb.mit.edu/~floyd/courses/gg/201807_Bishkek. – 2018.
  • 8. Reilinger R. et al. GPS constraints on continental deformationin the Africa-Arabia-Eurasia continental collision zone andimplications for the dynamics of plate interactions // J. Geophys. Res. 2006б. BO5411. doi: 10.1029/2005JB004051
  • 9. Reilinger R., McClusky S., Arrajehi A., Mahmoud S., Ryan A., Ghebreab W., Ogubazghi G., Al)Aydrus A. Geodetic constraints on rupturing of the continental lithosphere along theRed Sea // MARGINS Newsletters. 2006a. V. 17. P. 16–19.
  • 10. Александров И. Космическая радионавигационная система НАВСТАР // Зарубежное военное обозрение. М., 1995. № 5. С. 52-63. ISSN 0134-921X.
  • 11. Давиденко Д. В. Диагностика ионосферных возмущений над сейсмоопасными регионами, Институт прикладной геофизики имени академика Е.К.Федорова, дисс. На соскание канд. Физ.мех.наук., Москва, 2013, 147 с.
  • 12. Долганюк C. И. Методы и алгоритмы обработки информации для позиционирования мобильных промышленных объектов на базе ГЛОНАСС/GPS, Диссертация на соискание учёной степени кандидата технических наук, M., 2010, 150 c.
  • 13. Кадиров Ф.А., Гулиев И.С., Фейзуллаев А.А., Сафаров Р.Т., Маммадов С.К., Бабаев Г.Р., Рашидов Т.M. Деформации земной коры в Азербайджане по GPS-данным и их влияния на сейсмичность и грязевой вулканизм // ФИЗИКА ЗЕМЛИ, 2014, № 6, с. 1–10
  • 14. Козловский Е. Искусство позиционирования // Вокруг света. М., 2006. № 12 (2795). С. 204-280.
  • 15. Короновский Н.В. Напряженное состояние земной коры // Соросовский образовательный журнал, №1, 1997, Москва.
  • 16. Костюк А.Д., Сычева Н.А., Юнга С.Л., Богомолов Л.М., Яги Ю. Деформация земной коры Северного ТяньШаня по данным очагов землетрясений и космической геодезии // Физика Земли. 2010. No 3. С. 52–65
  • 17. Лухнева О.Ф., Лухнев А.В. Исследование косейсмических деформаций, сопровождающих известные сильные землетрясения // Институт земной коры СО РАН, Иркутск, 19 – 23 сентября 2016 г, с. 24-28.
There are 17 citations in total.

Details

Primary Language English
Subjects Seismology and Seismic Exploration, Geophysics (Other)
Journal Section Research Article
Authors

Gurban Yetırmıshlı

Ilyas Kazimov This is me

Aygun Kazimova This is me

Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 22 Issue: 2

Cite

APA Yetırmıshlı, G., Kazimov, I., & Kazimova, A. (2022). DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS. Seismoprognosis Observations in the Territory of Azerbaijan, 22(2), 15-22.
AMA Yetırmıshlı G, Kazimov I, Kazimova A. DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS. Seismoprognosis Observations in the Territory of Azerbaijan. December 2022;22(2):15-22.
Chicago Yetırmıshlı, Gurban, Ilyas Kazimov, and Aygun Kazimova. “DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS”. Seismoprognosis Observations in the Territory of Azerbaijan 22, no. 2 (December 2022): 15-22.
EndNote Yetırmıshlı G, Kazimov I, Kazimova A (December 1, 2022) DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS. Seismoprognosis Observations in the Territory of Azerbaijan 22 2 15–22.
IEEE G. Yetırmıshlı, I. Kazimov, and A. Kazimova, “DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS”, Seismoprognosis Observations in the Territory of Azerbaijan, vol. 22, no. 2, pp. 15–22, 2022.
ISNAD Yetırmıshlı, Gurban et al. “DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS”. Seismoprognosis Observations in the Territory of Azerbaijan 22/2 (December2022), 15-22.
JAMA Yetırmıshlı G, Kazimov I, Kazimova A. DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS. Seismoprognosis Observations in the Territory of Azerbaijan. 2022;22:15–22.
MLA Yetırmıshlı, Gurban et al. “DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS”. Seismoprognosis Observations in the Territory of Azerbaijan, vol. 22, no. 2, 2022, pp. 15-22.
Vancouver Yetırmıshlı G, Kazimov I, Kazimova A. DETERMINATION OF THE DEPTHS OF THE ACTIVE BLOCKS ACCORDING TO THE DATA OF THE GPS STATIONS. Seismoprognosis Observations in the Territory of Azerbaijan. 2022;22(2):15-22.