Research Article
BibTex RIS Cite

Auditors' Opinion About AI and the Impact of AI on Audit Quality: A Study on Qualified Auditors in Africa

Year 2025, Volume: 4 Issue: 1, 1 - 17, 30.06.2025
https://doi.org/10.5281/zenodo.15736028

Abstract

The purpose of this study is to ascertain the opinions of African certified auditors on the use of artificial intelligence in auditing systems and the implications for audit quality. Artificial intelligence innovation has brought about significant improvements in the inspection industry, such as enhanced capacity for making decisions, reduced expenses, and increased efficiency. The investigation looks at a variety of AI-related topics, keeping in mind its uses for audits, ethical reflections, and barriers to widespread AI acceptance in Africa. A mixed methods approach was employed to coordinate the gathering and analysis of both quantitative and subjective data. To get data about planned research questionnaires was sent out to a specified irregular sample of 400 qualified auditors from different African nations. Study's research technique makes use of Cronbach's Alpha, one-way ANOVA, factor analysis, and descriptive analysis. Thematic investigation was used to hunt out typical subjects, and results cross-checked against quantitative data. The results demonstrate that while auditors generally support artificial intelligence, they also raise concerns about moral dilemmas and the need for appropriate training and background before working with artificial intelligence systems. Questionnaires sent to auditors from various age groups and educational backgrounds are crucial for the audit method, which provides a thorough understanding of their viewpoints. In general, the evaluation provides insightful information on the perception of artificial intelligence in the African audit sector and identifies fundamental areas that require further development in order to fully comprehend its potential advantages.

Ethical Statement

It was approved by the decision of Istanbul Aydın University Social and Human Sciences Ethics Committee Commission dated 15.08.2024 and numbered 2024/08.

References

  • Abdollahi, A., Pitenoei, Y. R., & Gerayli, M. S. (2020). Auditor's report, auditor's size and value relevance of accounting information. Journal of Applied Accounting Research, 721-739.
  • Agur, I., Peria, S. M., & Rochon, C. (2020). Digital Financial services and the pandemic: Opportunities and risks for emerging and developing economies. International Monetary Fund Special Series on COVID-19, 44-71.
  • Alawaqleh, Q. A., & Almasria, N. A. (2021). The impact of audit committee performance and composition on financial reporting quality in Jordan . International Journal of Financial Research.
  • Albawwat, I., & Frijat, Y. (2021). An analysis of auditors’ perceptions towards artificial intelligence and its contribution to audit quality. Accounting, 7, 755–762.
  • Alsheibani, S., Messom, C., & Cheung, Y. (2020). Re-thinking the competitive landscape of artificial intelligence.
  • Choi, J., Dutz, M. A., & Usman, Z. (2020). The future of work in africa: harnessing the potential of digital technologies for all. World Bank Publications.
  • Dagunduro , M. E., Falana, G. A., Adewara, Y. M., & Busayo , T. O. (2023). Application of artificial intelligence and audit quality in Nigeria. Humanities, Management, Arts, Education & the Social Sciences Journal, 11(1), 39-56.
  • Dessureault, S., & Benito , R. O. (2012). Data mining and activity based costing for equipment replacement decisions: Part 1 - Establishing the information infrastructure. Mining Technology, 73-82.
  • Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24, 1709-1734.
  • Giehl, J., Göcke, H., Grosse, B., Kochems, J., & Müller-Kirchenbauer , J. (2020). Survey and classification of business models for the energy transformation. Energies.
  • Hasan, A. R. (2022). Artificial intelligence (AI) in accounting & auditing: A literature review . Open Journal of Business Management, 10(1), 462.
  • Issa, H., Sun, T., & Vasarhelyi, A. M. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. J. Emerg. Technol. Account, 13(2), 1-20.
  • Klovienė, L., & Dagilienė, L. (2019). Motivation to use Big data and big data analytics in external auditing. Managerial Auditing Journal, 750-782.
  • Kokina, J., Blanchette, S., Davenport, T. H., & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information Systems.
  • Lancaster, G. (2005). Research Methods in Management: A Concise Introduction to Research in Management and Business Consultancy . Oxford: Elsevier Butterworth-Heineman.
  • Lawal, B. A., Akintoye, I. R., Abiodun, S. W., & Olawumi , L. B. (2020). Audit reporting lag and firm value in nigerian food and beverage companies. Market Forces.
  • Madden, P., & Kanos, D. (2021). Figures of the week: Digital skills and the future of work in Africa. Brookings.
  • Microsoft. (2021). Microsoft collaborates with the Nigerian government to accelerate digital transformation in the country. Microsoft News Center.
  • Munoko, I., Liburd, H. L., & Vasarhelyi, M. (2020). Business ethics. The Ethical Implications of Using Artificial Intelligence in Auditing, 167, 209-234.
  • World Bank. (2021). Digital Economy for Africa Initiative. World Bank.
  • Zemankova, A. (2019). Artificial Intelligence in Audit and Accounting: Development, Current Trends. IEE Explore.

Denetçilerin Yapay Zeka Hakkındaki Görüşleri Ve Yapay Zeka’nın Denetim Kalitesi Üzerindeki Etkisi: Afrika’daki Nitelikli Denetçiler Üzerine Bir Araştırma

Year 2025, Volume: 4 Issue: 1, 1 - 17, 30.06.2025
https://doi.org/10.5281/zenodo.15736028

Abstract

Bu çalışmanın amacı, Afrikalı sertifikalı denetçilerin denetim sistemlerinde yapay zekâ kullanımı ve bunun denetim kalitesi üzerindeki etkileri hakkındaki görüşlerini tespit etmektir. Yapay zeka inovasyonu, denetim sektöründe karar verme kapasitesinin artması, maliyetlerin azalması ve verimliliğin artması gibi önemli gelişmelere yol açmıştır. Araştırma, yapay zekanın denetimlerde kullanımını, etik yansımalarını ve Afrika'da yapay zekanın yaygın olarak kabul edilmesinin önündeki engelleri göz önünde bulundurarak yapay zeka ile ilgili çeşitli konuları incelemektedir. Çalışmada hem nicel hem de nitel verilerin toplanması ile analizi tamamlamak için karma yaklaşım kullanılmıştır. Planlanan araştırma hakkında veri elde etmek için farklı Afrika ülkelerinden 400 nitelikli denetçiden oluşan belirli bir düzensiz örnekleme anketler gönderilmiştir. Çalışmanın araştırma tekniği Cronbach's Alpha, tek yönlü ANOVA, faktör analizi ve betimsel analizden yararlanmaktadır. Tipik konuları ortaya çıkarmak için tematik araştırma kullanılmış ve sonuçlar nicel verilerle çapraz kontrol edilmiştir. Sonuçlar, denetçilerin genel olarak yapay zekayı desteklemekle birlikte, ahlaki ikilemler ve yapay zeka sistemleriyle çalışmadan önce uygun eğitim ve arka plan ihtiyacı konusunda endişelerini dile getirdiklerini göstermektedir. Çeşitli yaş gruplarından ve eğitim geçmişlerinden denetçilerle yapılan anket, bakış açılarının kapsamlı bir şekilde anlaşılmasını sağlayan denetim yöntemi için çok önemlidir. Genel olarak değerlendirme, Afrika denetim sektöründeki yapay zekâ algısı hakkında aydınlatıcı bilgiler sunmakta ve potansiyel avantajlarının tam olarak kavranması için daha fazla geliştirilmesi gereken temel alanları belirlemektedir.

References

  • Abdollahi, A., Pitenoei, Y. R., & Gerayli, M. S. (2020). Auditor's report, auditor's size and value relevance of accounting information. Journal of Applied Accounting Research, 721-739.
  • Agur, I., Peria, S. M., & Rochon, C. (2020). Digital Financial services and the pandemic: Opportunities and risks for emerging and developing economies. International Monetary Fund Special Series on COVID-19, 44-71.
  • Alawaqleh, Q. A., & Almasria, N. A. (2021). The impact of audit committee performance and composition on financial reporting quality in Jordan . International Journal of Financial Research.
  • Albawwat, I., & Frijat, Y. (2021). An analysis of auditors’ perceptions towards artificial intelligence and its contribution to audit quality. Accounting, 7, 755–762.
  • Alsheibani, S., Messom, C., & Cheung, Y. (2020). Re-thinking the competitive landscape of artificial intelligence.
  • Choi, J., Dutz, M. A., & Usman, Z. (2020). The future of work in africa: harnessing the potential of digital technologies for all. World Bank Publications.
  • Dagunduro , M. E., Falana, G. A., Adewara, Y. M., & Busayo , T. O. (2023). Application of artificial intelligence and audit quality in Nigeria. Humanities, Management, Arts, Education & the Social Sciences Journal, 11(1), 39-56.
  • Dessureault, S., & Benito , R. O. (2012). Data mining and activity based costing for equipment replacement decisions: Part 1 - Establishing the information infrastructure. Mining Technology, 73-82.
  • Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24, 1709-1734.
  • Giehl, J., Göcke, H., Grosse, B., Kochems, J., & Müller-Kirchenbauer , J. (2020). Survey and classification of business models for the energy transformation. Energies.
  • Hasan, A. R. (2022). Artificial intelligence (AI) in accounting & auditing: A literature review . Open Journal of Business Management, 10(1), 462.
  • Issa, H., Sun, T., & Vasarhelyi, A. M. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. J. Emerg. Technol. Account, 13(2), 1-20.
  • Klovienė, L., & Dagilienė, L. (2019). Motivation to use Big data and big data analytics in external auditing. Managerial Auditing Journal, 750-782.
  • Kokina, J., Blanchette, S., Davenport, T. H., & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information Systems.
  • Lancaster, G. (2005). Research Methods in Management: A Concise Introduction to Research in Management and Business Consultancy . Oxford: Elsevier Butterworth-Heineman.
  • Lawal, B. A., Akintoye, I. R., Abiodun, S. W., & Olawumi , L. B. (2020). Audit reporting lag and firm value in nigerian food and beverage companies. Market Forces.
  • Madden, P., & Kanos, D. (2021). Figures of the week: Digital skills and the future of work in Africa. Brookings.
  • Microsoft. (2021). Microsoft collaborates with the Nigerian government to accelerate digital transformation in the country. Microsoft News Center.
  • Munoko, I., Liburd, H. L., & Vasarhelyi, M. (2020). Business ethics. The Ethical Implications of Using Artificial Intelligence in Auditing, 167, 209-234.
  • World Bank. (2021). Digital Economy for Africa Initiative. World Bank.
  • Zemankova, A. (2019). Artificial Intelligence in Audit and Accounting: Development, Current Trends. IEE Explore.
There are 21 citations in total.

Details

Primary Language English
Subjects Finance Studies (Other)
Journal Section Research Article
Authors

Urich Joe Saly Lontsi 0009-0006-9483-7371

Doğuş Ektik 0000-0001-7095-6364

Publication Date June 30, 2025
Submission Date April 30, 2025
Acceptance Date May 29, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Saly Lontsi, U. J., & Ektik, D. (2025). Auditors’ Opinion About AI and the Impact of AI on Audit Quality: A Study on Qualified Auditors in Africa. Siirt Sosyal Araştırmalar Dergisi, 4(1), 1-17. https://doi.org/10.5281/zenodo.15736028


33994


This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.