Research Article
BibTex RIS Cite

COMPARISON OF MARGINAL ADAPTATION OF DIFFERENT FRAMEWORK MATERIALS BEFORE AND AFTER CEMENTATION: AN IN VITRO STUDY

Year 2022, , 28 - 45, 30.04.2022
https://doi.org/10.55895/sshs.1050112

Abstract

Purpose: This study aimed to compare the marginal adaptation of different framework materials polyetheretherketone (PEEK), zirconia, and cobalt-chromium (Co-Cr) through direct metal laser sintered (DMLS) and conventional casting (CC) in fixed prosthetic restorations.
Materials and Methods: A total of 80 stainless steel dies were embedded in silicone molds, and the master models obtained were divided into four groups (n=20): PEEK, zirconia, Co-Cr through DMLS and CC frameworks. The vertical marginal gap was measured by stereomicroscope at ×20 magnification. In addition to descriptive statistics in the evaluation of data, one-way ANOVA was used with the post hoc multiple comparison test Tamhane’s T2, as the data were normally distributed and variances differed according to the Kolmogorov–Smirnov and Shapiro–Wilk tests.
Results: There was a statistically significant difference in vertical marginal gap before and after cementation in all groups (p<0.05).
Conclusion: Before and after cementation, vertical marginal gap values of laser sintered Co-Cr, zirconia, and PEEK frameworks were clinically acceptable.
Keywords: PEEK; Marginal Adaptation; Laser Sintered Co-Cr; Zirconia; Framework

Supporting Institution

ADYUBAPB-Adiyaman University Research Project Council (ADYUBAP)

Project Number

(ADYUBAP) – DHFDUP/2019-0003)

References

  • American Dental Association. Guide to dental materials and devices. 5th ed. Chicago: American Dental Association; 1970. p. 87-8
  • Att, W., Komine, F., Gerds, T., & Strub, J.R. (2009). Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. The Journal of prosthetic dentistry, 101(4), 239-47.
  • Boitelle, P., Mawussi, B., Tapie, L., & Fromentin, O. (2014). A systematic review of CAD/CAM fit restoration evaluations. Journal of oral rehabilitation, 41(11), 853-74.
  • Chaar, M.S., Passia, N., & Kern, M. (2020). Long-term clinical outcome of posterior metal-ceramic crowns fabricated with direct metal laser-sintering technology. Journal of prosthodontic research, 64(3), 354-7.
  • Conrad, H.J., Seong, W.J., & Pesun, I.J. (2007). Current ceramic materials and systems with clinical recommendations: a systematic review. The Journal of prosthetic dentistry, 98(5), 389-404.
  • Contrepois, M., Soenen, A., Bartala, M., & Laviole, O. (2013). Marginal adaptation of ceramic crowns: a systematic review. The Journal of prosthetic dentistry, 110(6), 447-454.e10.
  • Dahl, B.E., Dahl, J.E., & Rønold, H.J. (2018). Digital evaluation of marginal and internal fit of single-crown fixed dental prostheses. European journal of oral sciences, 126(6), 512-7.
  • Gassino, G., Barone Monfrin, S., Scanu, M., Spina, G., & Preti, G. (2004). Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. The International journal of prosthodontics, 17(2), 218-23.
  • Ghodsi, S., Zeighami, S., & Meisami Azad, M. (2018). Comparing Retention and Internal Adaptation of Different Implant-Supported, Metal-Free Frameworks. The International journal of prosthodontics, 31(5), 475-7.
  • Gonzalo, E., Suárez, M.J., Serrano, B., & Lozano, J.F. (2009). A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. The Journal of prosthetic dentistry, 102(6), 378-84.
  • Groten, M., Axmann, D., Pröbster, L., & Weber, H. (2000). Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. The Journal of prosthetic dentistry, 83(1), 40-9.
  • Hickel, R., Peschke, A., Tyas, M., Mjör, I., Bayne, S., Peters, M., ... & Heintze, S.D. (2010). FDI World Dental Federation: clinical criteria for the evaluation of direct and indirect restorations-update and clinical examples. Clinical oral investigations, 14(4), 349-66.
  • Holmes, J.R., Bayne, S.C., Holland, G.A., & Sulik, W.D. (1989). Considerations in measurement of marginal fit. The Journal of prosthetic dentistry, 62(4), 405-8.
  • Huang, Z., Zhang, L., Zhu, J., & Zhang, X. (2015). Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. The Journal of prosthetic dentistry, 113(6), 623-7.
  • Jin, H.Y., Teng, M.H., Wang, Z.J., Li, X., Liang, J.Y., Wang, W.X., ... & Zhao, B.D. (2019). Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. The Journal of prosthetic dentistry, 122(4), 383-8.
  • Joda, T., Zarone, F., & Ferrari, M. (2017). The complete digital workflow in fixed prosthodontics: a systematic review. BMC oral health, 17(1), 124.
  • Karaman, T., Ulku, S.Z., Zengingul, A.I., Guven, S., Eratilla, V., & Sumer, E. (2015). Evaluation and comparison of the marginal adaptation of two different substructure materials. The journal of advanced prosthodontics, 7(3), 257-63.
  • Kocaağaoğlu, H., Kılınç, H.İ., Albayrak, H., & Kara, M. (2016). In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. The Journal of prosthetic dentistry, 116(3), 368-74.
  • Larsson, C., & Wennerberg, A. (2014). The clinical success of zirconia-based crowns: a systematic review. The International journal of prosthodontics, 27(1), 33-43.
  • McLean, J.W., & von Fraunhofer, J.A. (1971). The estimation of cement film thickness by an in vivo technique. British dental journal, 131(3), 107-11.
  • Nawafleh, N.A., Mack, F., Evans, J., Mackay, J., & Hatamleh, M.M. (2013). Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. Journal of prosthodontics : official journal of the American College of Prosthodontists, 22(5), 419-28.
  • Nelson, N., K S, J., & Sunny, K. (2017). Marginal Accuracy and Internal Fit of Dental Copings Fabricated by Modern Additive and Subtractive Digital Technologies. The European journal of prosthodontics and restorative dentistry, 25(1), 20-5.
  • Papadiochou, S., & Pissiotis, A.L. (2018). Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. The Journal of prosthetic dentistry, 119(4), 545-51.
  • Raigrodski, A.J., Hillstead, M.B., Meng, G.K., & Chung, K.H. (2012). Survival and complications of zirconia-based fixed dental prostheses: a systematic review. The Journal of prosthetic dentistry, 107(3), 170-7.
  • Sailer, I., Makarov, N.A., Thoma, D.S., Zwahlen, M., & Pjetursson, B.E. (2015). All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dental materials : official publication of the Academy of Dental Materials, 31(6), 603-23.
  • Silva, N.R., Sailer, I., Zhang, Y., Coelho, P.G., Guess, P.C., Zembic, A., & Kohal, R.J. (2010). Performance of Zirconia for Dental Healthcare. Materials, 3(2), 863-96.
  • Sundh, A., Molin, M., & Sjögren, G. (2005). Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dental materials : official publication of the Academy of Dental Materials, 21(5), 476-82.
  • Tekin, S., Değer, Y., & Demirci, F. (2019). Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis. Nigerian journal of clinical practice, 22(9), 1252-8.
  • Ural, C., Burgaz, Y., & Saraç, D. (2010). In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques. Quintessence international (Berlin, Germany : 1985), 41(7), 585-90.
  • Xu, D., Xiang, N., & Wei, B. (2014). The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study. The Journal of prosthetic dentistry, 112(6), 1437-40.
  • Yildirim, B., & Paken, G. (2019). Evaluation of the Marginal and Internal Fit of Implant-Supported Metal Copings Fabricated with 3 Different Techniques: An In Vitro Study. Journal of prosthodontics : official journal of the American College of Prosthodontists, 28(3), 315-20.
  • Zeighami, S., Ghodsi, S., Sahebi, M., & Yazarloo, S. (2019). Comparison of Marginal Adaptation of Different Implant-Supported Metal-Free Frameworks Before and After Cementation. The International journal of prosthodontics, 32(4), 361-3.
Year 2022, , 28 - 45, 30.04.2022
https://doi.org/10.55895/sshs.1050112

Abstract

Project Number

(ADYUBAP) – DHFDUP/2019-0003)

References

  • American Dental Association. Guide to dental materials and devices. 5th ed. Chicago: American Dental Association; 1970. p. 87-8
  • Att, W., Komine, F., Gerds, T., & Strub, J.R. (2009). Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. The Journal of prosthetic dentistry, 101(4), 239-47.
  • Boitelle, P., Mawussi, B., Tapie, L., & Fromentin, O. (2014). A systematic review of CAD/CAM fit restoration evaluations. Journal of oral rehabilitation, 41(11), 853-74.
  • Chaar, M.S., Passia, N., & Kern, M. (2020). Long-term clinical outcome of posterior metal-ceramic crowns fabricated with direct metal laser-sintering technology. Journal of prosthodontic research, 64(3), 354-7.
  • Conrad, H.J., Seong, W.J., & Pesun, I.J. (2007). Current ceramic materials and systems with clinical recommendations: a systematic review. The Journal of prosthetic dentistry, 98(5), 389-404.
  • Contrepois, M., Soenen, A., Bartala, M., & Laviole, O. (2013). Marginal adaptation of ceramic crowns: a systematic review. The Journal of prosthetic dentistry, 110(6), 447-454.e10.
  • Dahl, B.E., Dahl, J.E., & Rønold, H.J. (2018). Digital evaluation of marginal and internal fit of single-crown fixed dental prostheses. European journal of oral sciences, 126(6), 512-7.
  • Gassino, G., Barone Monfrin, S., Scanu, M., Spina, G., & Preti, G. (2004). Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. The International journal of prosthodontics, 17(2), 218-23.
  • Ghodsi, S., Zeighami, S., & Meisami Azad, M. (2018). Comparing Retention and Internal Adaptation of Different Implant-Supported, Metal-Free Frameworks. The International journal of prosthodontics, 31(5), 475-7.
  • Gonzalo, E., Suárez, M.J., Serrano, B., & Lozano, J.F. (2009). A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. The Journal of prosthetic dentistry, 102(6), 378-84.
  • Groten, M., Axmann, D., Pröbster, L., & Weber, H. (2000). Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. The Journal of prosthetic dentistry, 83(1), 40-9.
  • Hickel, R., Peschke, A., Tyas, M., Mjör, I., Bayne, S., Peters, M., ... & Heintze, S.D. (2010). FDI World Dental Federation: clinical criteria for the evaluation of direct and indirect restorations-update and clinical examples. Clinical oral investigations, 14(4), 349-66.
  • Holmes, J.R., Bayne, S.C., Holland, G.A., & Sulik, W.D. (1989). Considerations in measurement of marginal fit. The Journal of prosthetic dentistry, 62(4), 405-8.
  • Huang, Z., Zhang, L., Zhu, J., & Zhang, X. (2015). Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. The Journal of prosthetic dentistry, 113(6), 623-7.
  • Jin, H.Y., Teng, M.H., Wang, Z.J., Li, X., Liang, J.Y., Wang, W.X., ... & Zhao, B.D. (2019). Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. The Journal of prosthetic dentistry, 122(4), 383-8.
  • Joda, T., Zarone, F., & Ferrari, M. (2017). The complete digital workflow in fixed prosthodontics: a systematic review. BMC oral health, 17(1), 124.
  • Karaman, T., Ulku, S.Z., Zengingul, A.I., Guven, S., Eratilla, V., & Sumer, E. (2015). Evaluation and comparison of the marginal adaptation of two different substructure materials. The journal of advanced prosthodontics, 7(3), 257-63.
  • Kocaağaoğlu, H., Kılınç, H.İ., Albayrak, H., & Kara, M. (2016). In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. The Journal of prosthetic dentistry, 116(3), 368-74.
  • Larsson, C., & Wennerberg, A. (2014). The clinical success of zirconia-based crowns: a systematic review. The International journal of prosthodontics, 27(1), 33-43.
  • McLean, J.W., & von Fraunhofer, J.A. (1971). The estimation of cement film thickness by an in vivo technique. British dental journal, 131(3), 107-11.
  • Nawafleh, N.A., Mack, F., Evans, J., Mackay, J., & Hatamleh, M.M. (2013). Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. Journal of prosthodontics : official journal of the American College of Prosthodontists, 22(5), 419-28.
  • Nelson, N., K S, J., & Sunny, K. (2017). Marginal Accuracy and Internal Fit of Dental Copings Fabricated by Modern Additive and Subtractive Digital Technologies. The European journal of prosthodontics and restorative dentistry, 25(1), 20-5.
  • Papadiochou, S., & Pissiotis, A.L. (2018). Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. The Journal of prosthetic dentistry, 119(4), 545-51.
  • Raigrodski, A.J., Hillstead, M.B., Meng, G.K., & Chung, K.H. (2012). Survival and complications of zirconia-based fixed dental prostheses: a systematic review. The Journal of prosthetic dentistry, 107(3), 170-7.
  • Sailer, I., Makarov, N.A., Thoma, D.S., Zwahlen, M., & Pjetursson, B.E. (2015). All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dental materials : official publication of the Academy of Dental Materials, 31(6), 603-23.
  • Silva, N.R., Sailer, I., Zhang, Y., Coelho, P.G., Guess, P.C., Zembic, A., & Kohal, R.J. (2010). Performance of Zirconia for Dental Healthcare. Materials, 3(2), 863-96.
  • Sundh, A., Molin, M., & Sjögren, G. (2005). Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dental materials : official publication of the Academy of Dental Materials, 21(5), 476-82.
  • Tekin, S., Değer, Y., & Demirci, F. (2019). Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis. Nigerian journal of clinical practice, 22(9), 1252-8.
  • Ural, C., Burgaz, Y., & Saraç, D. (2010). In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques. Quintessence international (Berlin, Germany : 1985), 41(7), 585-90.
  • Xu, D., Xiang, N., & Wei, B. (2014). The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study. The Journal of prosthetic dentistry, 112(6), 1437-40.
  • Yildirim, B., & Paken, G. (2019). Evaluation of the Marginal and Internal Fit of Implant-Supported Metal Copings Fabricated with 3 Different Techniques: An In Vitro Study. Journal of prosthodontics : official journal of the American College of Prosthodontists, 28(3), 315-20.
  • Zeighami, S., Ghodsi, S., Sahebi, M., & Yazarloo, S. (2019). Comparison of Marginal Adaptation of Different Implant-Supported Metal-Free Frameworks Before and After Cementation. The International journal of prosthodontics, 32(4), 361-3.
There are 32 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Cevdet Çalışkan 0000-0003-0643-9738

Fatih Demirci 0000-0002-8744-5592

Merve Birgealp Erdem 0000-0001-7913-6805

Project Number (ADYUBAP) – DHFDUP/2019-0003)
Publication Date April 30, 2022
Submission Date December 28, 2021
Published in Issue Year 2022

Cite

APA Çalışkan, C., Demirci, F., & Birgealp Erdem, M. (2022). COMPARISON OF MARGINAL ADAPTATION OF DIFFERENT FRAMEWORK MATERIALS BEFORE AND AFTER CEMENTATION: AN IN VITRO STUDY. Sabuncuoglu Serefeddin Health Sciences, 4(1), 28-45. https://doi.org/10.55895/sshs.1050112


academindex_logo.png

asos-index.png

logo.png