Review
BibTex RIS Cite

Organoidler ve Organoidlerin Kanser Araştırmalarındaki Önemi

Year 2024, Issue: 7, 31 - 41, 23.12.2024

Abstract

Tümörler, hem neoplastik hücreleri hem de tümör mikroçevresi (TME) olarak adlandırılan, kanserin ilerlemesini teşvik eden çeşitli bileşenleri içeren heterojen hastalıklardır. Malign tümörlerde ilaç geliştirme sürecindeki ana zorluk, bilimsel bulguların klinik uygulamaya kolay dönüşememesidir. Bu engeli aşmak için klinik öncesi modeller geliştirmek gerekmektedir. PDTX'ler (hasta türevli tümör ksenogreftleri), birincil hasta tümör materyalinin bağışıklığı baskılanmış farelere nakledilmesi ile üretilmektedir. Böylelikle PDTX modelleri, fare kökenli bir tümör stromasının kendiliğinden gelişmesine ve metastaz oluşumunun araştırılmasına olanak tanımaktadır. PDTX tabanlı yaklaşımlar, tümörün ve onun mikro ortamının bazı kritik yönlerini modellemektedir. Ancak PDTX'ler, insana özgü bağışıklık bileşenlerinden yoksun, hayvanların kullanılmasını gerektiren, pahalı ve zaman alıcı yöntemlerdir ve insan kanserlerinin karmaşıklığını tam olarak yansıtamamaktadır. Bu nedenle, araştırmacılar, hastaların özelliklerini daha doğru yansıtan 3D organoidleri geliştirmiştir. Organoidler (PDO), kısa sürede üretilebilmeleri ve türetildikleri tümörün moleküler özelliklerini korumaları nedeniyle avantaj sunmaktadır. Ancak stromal hücrelerin kaybı ve organ spesifik ekstraselüler matriks eksikliği gibi sınırlamaları vardır. Tümör organoidleri, bireysel tedavi yanıtlarını anlamaya yardımcı olabilmekte ve yeni immünoterapi yaklaşımlarını değerlendirmek için kullanılabilmektedir. Neoplastik ve enflamatuar hücreler arasındaki tümör mikroçevresinin karşılıklı şekilde karışması; kanserle ilişkili enflamasyonu ve tümör oluşumunun iş birliği içinde düzenleyen dinamik bileşenler içermektedir. Bu sebeple, organoid modellerin, kanserle ilişkili enflamasyon için tedavi fırsatı sağlayabileceği düşünülmektedir. Tümör immün hücre etkileşimini yakalamak için üç ana strateji geliştirilmiştir; matrigel kültürü, mikroakışkan 3D kültür ve hava-sıvı arayüz. Matrigel kültür, TME’yi yeniden oluştururken; mikroakışkan veya hava-sıvı arayüz kültürleri, orjinal tümörün doğal TME’sini içermektedir. Tümör organoidleri, bireysel düzeyde tedavi yanıtını anlamaya yardımcı olabilmekte ve yeni immünoterapi yaklaşımlarını değerlendirmek için kullanılabilmektedir.

References

  • Bleijs, M., van de Wetering, M., Clevers, H., Drost, J. (2019). Xenograft and organoid model systems in cancer research. Embo j, 38(15), e101654.
  • Brégeon, D., & Doetsch, P. W. (2011). Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer, 11(3), 218-227.
  • Byrne, A. T., Alférez, D. G., Amant, F., Annibali, D., Arribas, J., Biankin, A. V., Trusolino, L. (2017). Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer, 17(4), 254-268.
  • Cattaneo, C. M., Dijkstra, K. K., Fanchi, L. F., Kelderman, S., Kaing, S., van Rooij, N., Voest, E. E. (2020). Tumor organoid-T-cell coculture systems. Nat Protocols, 15(1), 15-39.
  • Cheon, D. J., & Orsulic, S. (2011). Mouse models of cancer. Annual Review of Pathology: Mechanisms of Disease, 6(1), 95-119.
  • Elbadawy, M., Hayashi, K., Ayame, H., Ishihara, Y., Abugomaa, A., Shibutani, M., Sasaki, K. (2021). Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids. Biomed Pharmacother, 142, 112043.
  • El Harane, S., Zidi, B., El Harane, N., Krause, K. H., Matthes, T., Preynat-Seauve, O. (2023). Cancer spheroids and organoids as novel tools for research and therapy: state of the art and challenges to guide precision medicine. Cells, 12(7), 1001.
  • Guo, L., Li, C., Gong, W. (2024). Toward reproducible tumor organoid culture: focusing on primary liver cancer. Front Immunol, 15, 1290504.
  • Hoffman, R. M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer, 15(8), 451-452.
  • Ihlamur, M., Başarı, H., Zengin, Y., Abamor, E.Ş. (2022). Evaluation Of Immunostimulant/Cytotoxic Activity Of Human Breast Cancer Prepared By Different Antigen Preparation Methods With Adjuvants Combination. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(1), 96–110. doi: 10.29233/sdufeffd.940806.
  • Ihlamur, M., Akgul, B., Zengin, Y., Korkut Ş, V., Kelleci, K., Abamor, E. (2024a). The mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Next-generation Inhibitors and Approaches. Curr Mol Med, 24(4), 478-494.
  • Ihlamur, M., Kelleci, K., Zengin, Y., Allahverdiyev, M. A., Abamor, E. (2024b). Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med, 24(3), 281-297.
  • Junttila, M. R., & De Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346-354.
  • Kelleci, K., Allahverdiyev, A., Bağirova, M., Ihlamur, M., Abamor, E. (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. J Vector Borne Dis, 60(2), 125-141.
  • Kretzschmar, K. (2021). Cancer research using organoid technology. J Mol Med (Berl), 99(4), 501-515. doi:10.1007/s00109-020-01990-z
  • Kretzschmar, K., & Clevers, H. (2016). Organoids: Modeling Development and the Stem Cell Niche in a Dish. Dev Cell, 38(6), 590-600.
  • Li, S., Zhou, J., Wu, H., Lu, Q., Tai, Y., Liu, Q., Wang, C. (2018). Oncogenic transformation of normal breast epithelial cells co-cultured with cancer cells. Cell Cycle, 17(16), 2027-2040. doi:10.1080/15384101.2018.1511510
  • Lo, Y. H., Karlsson, K., & Kuo, C. J. (2020). Applications of Organoids for Cancer Biology and Precision Medicine. Nat Cancer, 1(8), 761-773.
  • Meister, M. T., Groot Koerkamp, M. J. A., de Souza, T., Breunis, W. B., Frazer-Mendelewska, E., Brok, M., Holstege, F. C. P. (2022). Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. EMBO Mol Med, 14(10), e16001.
  • Naruse, M., Masui, R., Ochiai, M., Maru, Y., Hippo, Y., Imai, T. (2020). An organoid-based carcinogenesis model induced by in vitro chemical treatment. Carcinogenesis, 41(10), 1444-1453.
  • Palucka, A. K., & Coussens, L. M. (2016). The Basis of Oncoimmunology. Cell, 164(6), 1233-1247.
  • Pan, W., Song, K., Zhang, Y., Yang, C., Zhang, Y., Ji, F., Wang, K. (2022). The molecular subtypes of triple negative breast cancer were defined and a ligand-receptor pair score model was constructed by comprehensive analysis of ligand-receptor pairs. Front Immunol, 13, 982486.
  • Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., Clevers, H. (2020). Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature, 580(7802), 269-273.
  • Roos, W. P., Thomas, A. D., Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer, 16(1), 20-33.
  • Stratton, M. R., Campbell, P. J., Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719-724.
  • Veninga, V., & Voest, E. E. (2021). Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell, 39(9), 1190-1201.
  • Ward, E. M., Sherman, R. L., Henley, S. J., Jemal, A., Siegel, D. A., Feuer, E. J., Cronin, K. A. (2019). Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20-49 Years. J Natl Cancer Inst, 111(12), 1279-1297.
  • Xie, X., Li, X., Song, W. (2023). Tumor organoid biobank-new platform for medical research. Scientific Reports, 13.
  • Xu, H., Jiao, D., Liu, A., Wu, K. (2022). Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol, 15(1), 58.
  • Xu, R., Zhou, X., Wang, S., Trinkle, C. (2021). Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther, 218, 107668.
  • Yuki, K., Cheng, N., Nakano, M., Kuo, C. J. (2020). Organoid Models of Tumor Immunology. Trends Immunol, 41(8), 652-664.
  • Zengin, Y., Ihlamur, M., & Başarı, H. (2022). Immunostimulant/Cytotoxic Effect of Cardamom Extract with Adjuvant Combination on Breast Cancer Cell Line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2), 229-234.
  • Zhou, Z., Van der Jeught, K., Li, Y., Sharma, S., Yu, T., Moulana, I., Lu, X. (2023). A T Cell-Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy. Adv Sci (Weinh), 10(23), e2300548.
Year 2024, Issue: 7, 31 - 41, 23.12.2024

Abstract

References

  • Bleijs, M., van de Wetering, M., Clevers, H., Drost, J. (2019). Xenograft and organoid model systems in cancer research. Embo j, 38(15), e101654.
  • Brégeon, D., & Doetsch, P. W. (2011). Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer, 11(3), 218-227.
  • Byrne, A. T., Alférez, D. G., Amant, F., Annibali, D., Arribas, J., Biankin, A. V., Trusolino, L. (2017). Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer, 17(4), 254-268.
  • Cattaneo, C. M., Dijkstra, K. K., Fanchi, L. F., Kelderman, S., Kaing, S., van Rooij, N., Voest, E. E. (2020). Tumor organoid-T-cell coculture systems. Nat Protocols, 15(1), 15-39.
  • Cheon, D. J., & Orsulic, S. (2011). Mouse models of cancer. Annual Review of Pathology: Mechanisms of Disease, 6(1), 95-119.
  • Elbadawy, M., Hayashi, K., Ayame, H., Ishihara, Y., Abugomaa, A., Shibutani, M., Sasaki, K. (2021). Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids. Biomed Pharmacother, 142, 112043.
  • El Harane, S., Zidi, B., El Harane, N., Krause, K. H., Matthes, T., Preynat-Seauve, O. (2023). Cancer spheroids and organoids as novel tools for research and therapy: state of the art and challenges to guide precision medicine. Cells, 12(7), 1001.
  • Guo, L., Li, C., Gong, W. (2024). Toward reproducible tumor organoid culture: focusing on primary liver cancer. Front Immunol, 15, 1290504.
  • Hoffman, R. M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer, 15(8), 451-452.
  • Ihlamur, M., Başarı, H., Zengin, Y., Abamor, E.Ş. (2022). Evaluation Of Immunostimulant/Cytotoxic Activity Of Human Breast Cancer Prepared By Different Antigen Preparation Methods With Adjuvants Combination. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(1), 96–110. doi: 10.29233/sdufeffd.940806.
  • Ihlamur, M., Akgul, B., Zengin, Y., Korkut Ş, V., Kelleci, K., Abamor, E. (2024a). The mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Next-generation Inhibitors and Approaches. Curr Mol Med, 24(4), 478-494.
  • Ihlamur, M., Kelleci, K., Zengin, Y., Allahverdiyev, M. A., Abamor, E. (2024b). Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med, 24(3), 281-297.
  • Junttila, M. R., & De Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346-354.
  • Kelleci, K., Allahverdiyev, A., Bağirova, M., Ihlamur, M., Abamor, E. (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. J Vector Borne Dis, 60(2), 125-141.
  • Kretzschmar, K. (2021). Cancer research using organoid technology. J Mol Med (Berl), 99(4), 501-515. doi:10.1007/s00109-020-01990-z
  • Kretzschmar, K., & Clevers, H. (2016). Organoids: Modeling Development and the Stem Cell Niche in a Dish. Dev Cell, 38(6), 590-600.
  • Li, S., Zhou, J., Wu, H., Lu, Q., Tai, Y., Liu, Q., Wang, C. (2018). Oncogenic transformation of normal breast epithelial cells co-cultured with cancer cells. Cell Cycle, 17(16), 2027-2040. doi:10.1080/15384101.2018.1511510
  • Lo, Y. H., Karlsson, K., & Kuo, C. J. (2020). Applications of Organoids for Cancer Biology and Precision Medicine. Nat Cancer, 1(8), 761-773.
  • Meister, M. T., Groot Koerkamp, M. J. A., de Souza, T., Breunis, W. B., Frazer-Mendelewska, E., Brok, M., Holstege, F. C. P. (2022). Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. EMBO Mol Med, 14(10), e16001.
  • Naruse, M., Masui, R., Ochiai, M., Maru, Y., Hippo, Y., Imai, T. (2020). An organoid-based carcinogenesis model induced by in vitro chemical treatment. Carcinogenesis, 41(10), 1444-1453.
  • Palucka, A. K., & Coussens, L. M. (2016). The Basis of Oncoimmunology. Cell, 164(6), 1233-1247.
  • Pan, W., Song, K., Zhang, Y., Yang, C., Zhang, Y., Ji, F., Wang, K. (2022). The molecular subtypes of triple negative breast cancer were defined and a ligand-receptor pair score model was constructed by comprehensive analysis of ligand-receptor pairs. Front Immunol, 13, 982486.
  • Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., Clevers, H. (2020). Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature, 580(7802), 269-273.
  • Roos, W. P., Thomas, A. D., Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer, 16(1), 20-33.
  • Stratton, M. R., Campbell, P. J., Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719-724.
  • Veninga, V., & Voest, E. E. (2021). Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell, 39(9), 1190-1201.
  • Ward, E. M., Sherman, R. L., Henley, S. J., Jemal, A., Siegel, D. A., Feuer, E. J., Cronin, K. A. (2019). Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20-49 Years. J Natl Cancer Inst, 111(12), 1279-1297.
  • Xie, X., Li, X., Song, W. (2023). Tumor organoid biobank-new platform for medical research. Scientific Reports, 13.
  • Xu, H., Jiao, D., Liu, A., Wu, K. (2022). Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol, 15(1), 58.
  • Xu, R., Zhou, X., Wang, S., Trinkle, C. (2021). Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther, 218, 107668.
  • Yuki, K., Cheng, N., Nakano, M., Kuo, C. J. (2020). Organoid Models of Tumor Immunology. Trends Immunol, 41(8), 652-664.
  • Zengin, Y., Ihlamur, M., & Başarı, H. (2022). Immunostimulant/Cytotoxic Effect of Cardamom Extract with Adjuvant Combination on Breast Cancer Cell Line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2), 229-234.
  • Zhou, Z., Van der Jeught, K., Li, Y., Sharma, S., Yu, T., Moulana, I., Lu, X. (2023). A T Cell-Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy. Adv Sci (Weinh), 10(23), e2300548.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Cell Development, Proliferation and Death, Cancer Biology, Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Yağmur Uzundurkan 0009-0004-4475-0994

Handan Yaşar 0009-0008-9451-2950

Murat Ihlamur 0000-0002-0458-5638

Publication Date December 23, 2024
Submission Date August 8, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2024 Issue: 7

Cite

APA Uzundurkan, Y., Yaşar, H., & Ihlamur, M. (2024). Organoidler ve Organoidlerin Kanser Araştırmalarındaki Önemi. Şırnak Üniversitesi Fen Bilimleri Dergisi(7), 31-41.