BibTex RIS Cite

Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması

Year 2016, Volume: 1 Issue: 1, 39 - 43, 01.03.2016

Abstract

Gaz türbinli motorlar, tasarım aşaması tamamlandıktan sonra yanma odası, montaj öncesi ve montaj sonrası testlere tabi tutulur. Yanma odasının farklı noktalarından ölçülen basınç, sıcaklık, debi ve çıkış noktasından ölçülen emisyon değerleri, tasarım parametreleri ve farklı yazılımlar kullanılarak elde edilen katı model analiz sonuçlarıyla kıyaslanarak tasarım doğrulama çalışmaları gerçekleştirilir. Bu anlamda ölçülmüş olan emisyon verileri, yanma verimliliğinin belirlenmesi için önem taşımaktadır. Bu çalışma kapsamında, ölçülen emisyon değerleri kullanılarak yanma veriminin hesabına ilişkin bir matris çözüm yöntemi geliştirilmiştir. Geliştirilen bu matris çözüm yöntemi kullanılarak, bir turbofan tipi uçak motorunun yanma verimi hesabı gerçekleştirilmiş ve yanma verim değeri %99,93 olarak bulunmuştur

References

  • Ballal, D.R., ve A.H. Lefebvre. “Combustion Performance of Gas Turbine Combustors Burning Alternative Fuels.” Journal of Energy 3, no. 1 (1979): 50–54. doi:10.2514/3.62407.
  • Specification for Aviation Turbine Fuels” (n.d.). doi:10.1520/d1655-15d.
  • Beck, Jeannette P., Claire E. Reeves, Frank A.A.M. de Leeuw, ve Stuart A. Penkett. “The Effect of Aircraft Emissions on Tropospheric Ozone in the Northern Hemisphere.” Atmospheric Environment. Part A. General Topics 26, no. 1 (1992): 1686(92)90257-l. doi:10.1016/0960
  • Bejan, Adrian, and David L Siems. “The Need for Exergy Optimization in Aircraft Development.” Exergy, An InternationalJournal 1, no. 1 (2001): 14–24. doi:10.1016/s1164-0235(01)00005-x.
  • Conrado, A.C., Lacava, P.T. ve Filho, A.C.P., 2004. “Basic Design Principles for Gas Turbine Combustor”, 10th Brazilian Congress of Thermal Sciences and Engineering, Rio de Janeiro, Brezilya, 2004.
  • Datta, A., and S.K. Som. “Combustion and Emission Characteristics in a Gas Turbine Combustor at Different Pressure and Swirl Conditions.” Applied Thermal Engineering 19, no. 9 (1999): 949–967. doi:10.1016/s1359- 4311(98)00102-1.
  • Ekici, Selcuk, Gorkem Yalin, Onder Altuntas, and T. Hikmet Karakoc. “Calculation of HC, CO and NOx from Civil Aviation in Turkey in 2012.” International Journal of Environment and Pollution 53, no. 3/4 (2013): 232. doi:10.1504/ijep.2013.059919.
  • Glassman, I. Yetter, R.A., Combustion (4th Edition), Elsevier Academic Press, ABD, 2008.
  • Gohardani, Amir S. “A Synergistic Glance at the Prospects of Distributed Propulsion Technology and the Electric Aircraft Concept for Future Unmanned Commercial/military Aviation.” Progress in Aerospace doi:10.1016/j.paerosci.2012.08.001. and Sciences 57 (2013): 25–70.
  • Gürü, M. Yalçın, H., Stokiometri, Palme Yayıncılık, Cilt 1, Ankara, 519-524, 2012.
  • ICAO, Doc 9646: ICAO Engine Exhaust Emissions Data Bank, 2013. İnternet, 2015, http://www.pw.utc.com/JT8D_Engine
  • Kesgin, U. “Aircraft Emissions at Turkish Airports.” Energy 31, no. 2–3 (2006): 372–384. doi:10.1016/j.energy.2005.01.012.
  • Lebedev, A.B., A.N. Secundov, A.M. Starik, N.S. Titova, and A.M. Schepin. “Modeling Study of Gas-Turbine Proceedings of the Combustion Institute 32, no. 2 Emission.” (2009): 2941–2947. doi:10.1016/j.proci.2008.05.015.
  • Lee, S.H., M. Le Dilosquer, R. Singh, and M.J. Rycroft. “Further Considerations of Engine Emissions from Subsonic Aircraft at Cruise Altitude.” Atmospheric Environment 30, no. 22 (1996): 2310(96)00113-6. doi:10.1016/1352
  • Lee, Min Chul, Seok Bin Seo, Jae Hwa Chung, Si Moon Kim, Yong Jin Joo, and Dal Hong Ahn. “Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas.” Fuel 89, no. 7 (2010): 1485–1491. doi:10.1016/j.fuel.2009.10.004.
  • Lee, Min Chul, Seok Bin Seo, Jae Hwa Chung, Yong Jin Joo, and Dal Hong Ahn. “Industrial Gas Turbine Combustion Performance Test of DME to Use as an Alternative Fuel for Power Generation.” Fuel 88, no. 4 (April 2009): 657– 662. doi:10.1016/j.fuel.2008.10.027.
  • Lefebvre A.H. ve Ballal D.R., Gas Turbine Combustion Alternative Fuels and Emissions, CRC Press, ABD, 2010.
  • Lefebvre, A. H. “Fuel Effects on Gas Turbine Combustion-Liner Temperature, Pattern Factor, and Pollutant Emissions.” Journal of Aircraft 21, doi:10.2514/3.45059. (1984): 887–898.
  • Loo, Becky P.Y., Linna Li, Voula Psaraki, and Ioanna Pagoni. “CO2 Emissions Associated with Hubbing Activities in Air Transport: An International Comparison.” Journal of Transport Geography doi:10.1016/j.jtrangeo.2013.12.006. (2014): 185–193.
  • Man, Zhang, Fu Zhenbo, Li Jibao, and Lin Yuzhen. “CFD Approach to the Research and Design of Low Emission Commercial Aircraft Engine Combustor.” Procedia Engineering 17 (2011): 616–617. doi:10.1016/j.proeng.2011.10.077.
  • Mongia, H. C., R. S. Reynolds, And R. Srınıvasan. “Multidimensional Gas Turbine Combustion Modeling Applications and Limitations.” AIAA Journal doi:10.2514/3.9364. (1986): 890–904.
  • Paschereit, C.O., Gutmark, E. ve Schuermans, B., “Performance Enhancement of Gas-Turbine Combustor by Active Control of Fuel Injection and Mixing Process-Theory and Practice”, RTO AVT Technology Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, Braunschweig, Almanya, 2000. Active Control for Enhanced Performance Rabinovich, G.S., Measurement Errors Practice (3rd Uncertainties: Edition), Springer Science and Media, Inc., ABD, 2005. and
  • Renyu, F. ve Man, Z., “Low Emission Commercial Aircraft Engine Combustor Development in China: From Airworthiness Requirements to Combustor Symposium on Aircraft Airworthiness, Pekin, Çin, 2011. 2nd International
  • Snape, D.M., and M.T. Metcalfe. “Emissions From Aircraft: Improvement.” Freight Transport and the Environment doi:10.1016/s0166-1116(08)70367-4. For (1991): 175–184.
  • Şöhret, Y., Deneysel Bir Turbojet Motorunun Yanma Veriminin Motor Emisyonlarıyla Belirlenmesi, Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
  • Topal, A., Uslu, S. ve Turan, Ö., “A Design Tool for the Preliminary Analysis of Gas Turbine Combustors”, Aerospace Conference, Ankara, Türkiye, 2013.
  • Yılmaz, İ. İlbaş, M., “Gaz Türbinli Uçak Motorlarında İncelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 27, No 2 (2012): 343-351. Emisyonların

MATRIX METHOD TO CALCULATE COMBUSTION EFFICIENCY OF GAS TURBINE ENGINES WITH THE AID OF EMISSION DATA AND APPLICATION

Year 2016, Volume: 1 Issue: 1, 39 - 43, 01.03.2016

Abstract

Gas turbine engines are operated under test conditions before and after assembly when design process is over. Pressure, temperature, mass flow value measured from different stations and emission data measured from outlet of exhaust are compared with solid model analysis results obtained by using various software and off-design parameters for validation. In this sense, measured emission data is significant to determine combustion efficiency. In this study, a novel matrix solution method is developed to calculate combustion efficiency with the aid of emission data. Combustion efficiency of a turbofan engine is calculated by using developed matrix solution method and obtained to be 99.93%

References

  • Ballal, D.R., ve A.H. Lefebvre. “Combustion Performance of Gas Turbine Combustors Burning Alternative Fuels.” Journal of Energy 3, no. 1 (1979): 50–54. doi:10.2514/3.62407.
  • Specification for Aviation Turbine Fuels” (n.d.). doi:10.1520/d1655-15d.
  • Beck, Jeannette P., Claire E. Reeves, Frank A.A.M. de Leeuw, ve Stuart A. Penkett. “The Effect of Aircraft Emissions on Tropospheric Ozone in the Northern Hemisphere.” Atmospheric Environment. Part A. General Topics 26, no. 1 (1992): 1686(92)90257-l. doi:10.1016/0960
  • Bejan, Adrian, and David L Siems. “The Need for Exergy Optimization in Aircraft Development.” Exergy, An InternationalJournal 1, no. 1 (2001): 14–24. doi:10.1016/s1164-0235(01)00005-x.
  • Conrado, A.C., Lacava, P.T. ve Filho, A.C.P., 2004. “Basic Design Principles for Gas Turbine Combustor”, 10th Brazilian Congress of Thermal Sciences and Engineering, Rio de Janeiro, Brezilya, 2004.
  • Datta, A., and S.K. Som. “Combustion and Emission Characteristics in a Gas Turbine Combustor at Different Pressure and Swirl Conditions.” Applied Thermal Engineering 19, no. 9 (1999): 949–967. doi:10.1016/s1359- 4311(98)00102-1.
  • Ekici, Selcuk, Gorkem Yalin, Onder Altuntas, and T. Hikmet Karakoc. “Calculation of HC, CO and NOx from Civil Aviation in Turkey in 2012.” International Journal of Environment and Pollution 53, no. 3/4 (2013): 232. doi:10.1504/ijep.2013.059919.
  • Glassman, I. Yetter, R.A., Combustion (4th Edition), Elsevier Academic Press, ABD, 2008.
  • Gohardani, Amir S. “A Synergistic Glance at the Prospects of Distributed Propulsion Technology and the Electric Aircraft Concept for Future Unmanned Commercial/military Aviation.” Progress in Aerospace doi:10.1016/j.paerosci.2012.08.001. and Sciences 57 (2013): 25–70.
  • Gürü, M. Yalçın, H., Stokiometri, Palme Yayıncılık, Cilt 1, Ankara, 519-524, 2012.
  • ICAO, Doc 9646: ICAO Engine Exhaust Emissions Data Bank, 2013. İnternet, 2015, http://www.pw.utc.com/JT8D_Engine
  • Kesgin, U. “Aircraft Emissions at Turkish Airports.” Energy 31, no. 2–3 (2006): 372–384. doi:10.1016/j.energy.2005.01.012.
  • Lebedev, A.B., A.N. Secundov, A.M. Starik, N.S. Titova, and A.M. Schepin. “Modeling Study of Gas-Turbine Proceedings of the Combustion Institute 32, no. 2 Emission.” (2009): 2941–2947. doi:10.1016/j.proci.2008.05.015.
  • Lee, S.H., M. Le Dilosquer, R. Singh, and M.J. Rycroft. “Further Considerations of Engine Emissions from Subsonic Aircraft at Cruise Altitude.” Atmospheric Environment 30, no. 22 (1996): 2310(96)00113-6. doi:10.1016/1352
  • Lee, Min Chul, Seok Bin Seo, Jae Hwa Chung, Si Moon Kim, Yong Jin Joo, and Dal Hong Ahn. “Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas.” Fuel 89, no. 7 (2010): 1485–1491. doi:10.1016/j.fuel.2009.10.004.
  • Lee, Min Chul, Seok Bin Seo, Jae Hwa Chung, Yong Jin Joo, and Dal Hong Ahn. “Industrial Gas Turbine Combustion Performance Test of DME to Use as an Alternative Fuel for Power Generation.” Fuel 88, no. 4 (April 2009): 657– 662. doi:10.1016/j.fuel.2008.10.027.
  • Lefebvre A.H. ve Ballal D.R., Gas Turbine Combustion Alternative Fuels and Emissions, CRC Press, ABD, 2010.
  • Lefebvre, A. H. “Fuel Effects on Gas Turbine Combustion-Liner Temperature, Pattern Factor, and Pollutant Emissions.” Journal of Aircraft 21, doi:10.2514/3.45059. (1984): 887–898.
  • Loo, Becky P.Y., Linna Li, Voula Psaraki, and Ioanna Pagoni. “CO2 Emissions Associated with Hubbing Activities in Air Transport: An International Comparison.” Journal of Transport Geography doi:10.1016/j.jtrangeo.2013.12.006. (2014): 185–193.
  • Man, Zhang, Fu Zhenbo, Li Jibao, and Lin Yuzhen. “CFD Approach to the Research and Design of Low Emission Commercial Aircraft Engine Combustor.” Procedia Engineering 17 (2011): 616–617. doi:10.1016/j.proeng.2011.10.077.
  • Mongia, H. C., R. S. Reynolds, And R. Srınıvasan. “Multidimensional Gas Turbine Combustion Modeling Applications and Limitations.” AIAA Journal doi:10.2514/3.9364. (1986): 890–904.
  • Paschereit, C.O., Gutmark, E. ve Schuermans, B., “Performance Enhancement of Gas-Turbine Combustor by Active Control of Fuel Injection and Mixing Process-Theory and Practice”, RTO AVT Technology Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, Braunschweig, Almanya, 2000. Active Control for Enhanced Performance Rabinovich, G.S., Measurement Errors Practice (3rd Uncertainties: Edition), Springer Science and Media, Inc., ABD, 2005. and
  • Renyu, F. ve Man, Z., “Low Emission Commercial Aircraft Engine Combustor Development in China: From Airworthiness Requirements to Combustor Symposium on Aircraft Airworthiness, Pekin, Çin, 2011. 2nd International
  • Snape, D.M., and M.T. Metcalfe. “Emissions From Aircraft: Improvement.” Freight Transport and the Environment doi:10.1016/s0166-1116(08)70367-4. For (1991): 175–184.
  • Şöhret, Y., Deneysel Bir Turbojet Motorunun Yanma Veriminin Motor Emisyonlarıyla Belirlenmesi, Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
  • Topal, A., Uslu, S. ve Turan, Ö., “A Design Tool for the Preliminary Analysis of Gas Turbine Combustors”, Aerospace Conference, Ankara, Türkiye, 2013.
  • Yılmaz, İ. İlbaş, M., “Gaz Türbinli Uçak Motorlarında İncelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 27, No 2 (2012): 343-351. Emisyonların
There are 27 citations in total.

Details

Other ID JA83AN36PJ
Journal Section Research Article
Authors

Yasin Şöhret

T. Hikmet Karakoç This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Şöhret, Y., & Karakoç, T. H. (2016). Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması. Sürdürülebilir Havacılık Araştırmaları Dergisi, 1(1), 39-43.
AMA Şöhret Y, Karakoç TH. Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması. SÜHAD. March 2016;1(1):39-43.
Chicago Şöhret, Yasin, and T. Hikmet Karakoç. “Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi Ile Çözümü Ve Uygulaması”. Sürdürülebilir Havacılık Araştırmaları Dergisi 1, no. 1 (March 2016): 39-43.
EndNote Şöhret Y, Karakoç TH (March 1, 2016) Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması. Sürdürülebilir Havacılık Araştırmaları Dergisi 1 1 39–43.
IEEE Y. Şöhret and T. H. Karakoç, “Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması”, SÜHAD, vol. 1, no. 1, pp. 39–43, 2016.
ISNAD Şöhret, Yasin - Karakoç, T. Hikmet. “Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi Ile Çözümü Ve Uygulaması”. Sürdürülebilir Havacılık Araştırmaları Dergisi 1/1 (March 2016), 39-43.
JAMA Şöhret Y, Karakoç TH. Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması. SÜHAD. 2016;1:39–43.
MLA Şöhret, Yasin and T. Hikmet Karakoç. “Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi Ile Çözümü Ve Uygulaması”. Sürdürülebilir Havacılık Araştırmaları Dergisi, vol. 1, no. 1, 2016, pp. 39-43.
Vancouver Şöhret Y, Karakoç TH. Gaz Türbinli Motorların Yanma Veriminin Emisyon Verileri Kullanılarak Matris Yöntemi ile Çözümü ve Uygulaması. SÜHAD. 2016;1(1):39-43.