Research Article
BibTex RIS Cite

YAPILMASI PLANLANAN GÜNEY MARMARA OTOYOLUNDAKİ TAŞIT TRAFİĞİNİN KOCAELİ İLİ HAVA KİRLİLİĞİNE ETKİSİ

Year 2025, Issue: 8 ÇEVRE, 63 - 73, 05.02.2025

Abstract

Bu çalışmada, yapılması planlanan Güney Marmara Otoyolu’ndaki araç trafiğinin Kocaeli ili hava kirliliğine etkisi değerlendirilmiştir. Çalışma kapsamında Güney Marmara Otoyolu’nu kullanan/kullanacak araç sayılarına ve türlerine bağlı olarak farklı ‘Senaryo’lar oluşturulmuştur. Senaryolar, mevcut 130-01 numaralı Gölcük-Altınova yolunu kullanan araçların %20, %30 ve %35’inin Güney Marmara Otoyolu’nu kullanacağı varsayımları üzerine kurulmuştur. Çalışma kapsamında değerlendirilen kirleticiler; kükürt dioksit (SO2), partiküler madde (PM10), karbon monoksit (CO), karbon dioksit (CO2), azot oksit (NOX) ve metan dışı uçucu organik bileşikler (NMVOC)’dir. Bu kirleticilere ilişkin hesaplanan trafik kaynaklı emisyonlar EPA onaylı hava kalitesi dağılım modeli olan AERMOD’a girilerek bölgeye ilişkin kirlilik dağılım haritaları oluşturulmuştur. Belirlenen max. kirletici konsantrasyonları ulusal ve uluslararası standartlarla karşılaştırılmıştır.

Modelleme çalışmasının sonuçlarına göre; taşıt kaynaklı NOX, PM10, NMVOC, CO, CO2 ve SO2 emisyonlarının 1 saatlik max konsantrasyonları sırasıyla senaryo 3’de mevcut duruma göre; %28, %53, %49, %50, %49 ve %35 azalırken, yıllık max. konsantrasyonları ise; %-7, %53, %49, %49, %49, %34 oranında azalmıştır. Max. kirletici konsantrasyonunun görüldüğü alıcı noktaları İzmit Şehir Merkezi (746985.59; 4516448.29) ve Dilovası (712439.79; 4518354.94) olarak belirlenmiştir. Modelleme çalışması ile belirlenen max kirletici konsantrasyonları ulusal (HKKDY) ve uluslararası (WHO, EU) sınır değerler ile karşılaştırıldığında; NOX’in, NO2 için verilen sınır değerlerin üzerinde olduğu, PM10’un; her ne kadar HKDYY’nde ve EU’daki yıllık sınır değeri karşılasa da WHO sınır değerini aştığı belirlenmiştir. Ancak senaryo durumlarında (senaryo 1, senaryo 2 ve senaryo 3) WHO sınır değeri sağlanmaktadır.

References

  • Adeyanju, A. A., Manohar, K. (2017). Effects of Vehicular Emission on Environmental Pollution in Lagos. Sci-Afric J Sci Issues Res Essays, 5(4), 34-51.
  • Altuntaş, O. (2019). Osmangazi Köprüsünün Kocaeli İli Körfez Bölgesindeki Taşıt Kaynaklı Emisyon Kirliliğine Etkisinin Modellenmesi, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 591868.
  • Anderson, M. L. (2014). Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion. American Economic Review, 104(9), 2763–2796. DOI: 10.1257/aer.104.9.2763.
  • Başaran, Y. (2009). Dilovası Çanağı’nda Ozon Prekürsörü Olan NOx Dağılımlarının İncelenmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 251524.
  • Chen, Y., & Whalley, A. (2012). Green Infrastructure: The Effects of Urban Rail Transit on Air Quality. American Economic Journal: Economic Policy, 4(1), 58-97. DOI: 10.1257/pol.4.1.58
  • Egede, P., Dettmer, T., Herrmann, C., Kara, S. (2015). Life Cycle Assessment of Electric Vehicles–A Framework to Consider İnfluencing Factors. Procedia CIRP, 29, 233-238.
  • Ergün Yüksel, B., Çetin Doğruparmak, Ş., Pekey, B., & Pekey, H. (2024). Assessment of Environmental Odor Pollution Using a Dispersion Model in an Industrialized Urban Area of Kocaeli, Turkey. CLEAN–Soil, Air, Water, 52(5), 2300221.
  • Franzò, S., Nasca, A. (2020). The Environmental Impact of Electric Vehicles: A Comparative LCA-Based Evaluation Framework and Its Application to The Italian Context. Fifteenth International Conference on Ecological Vehicles and Renewable Energies. Monte-Carlo, Monaco, 10-12 September 2020.
  • Huang, S. K., Kuo, L., Chou, K. L. (2016). The Applicability of Marginal Abatement Cost Approach: A Comprehensive Review. Journal of Cleaner Production, 127, 59-71.
  • IPCC (2006). Guidelines for National Greenhouse Gas Inventories: Mobile Combustion, https://www.ipcc-nggip.iges.or.jp/publi- c/2006gl/
  • Jamshidi Kalajahi, M., Khazini, L., Rashidi, Y., Zeinali Heris, S. (2020). Development of Reduction Scenarios Based on Urban Emission Estimation and Dispersion of Exhaust Pollutants from Light Duty Public Transport: Case of Tabriz, Iran. Emission Control Science and Technology, 6, 86-104.
  • Jin, T., & Fu, L. (2005). Application of GIS to Modified Models of Vehicle Emission Dispersion. Atmospheric Environment, 39(34), 6326-6333.
  • Lazăr, D., Minea, A., Purcel, A. A. (2019). Pollution and Economic Growth: Evidence from Central and Eastern European countries. Energy Economics, 81, 1121-1131
  • Martins, N. R., & Da Graca, G. C. (2018). Impact of PM2. 5 in Indoor Urban Environments: A review. Sustainable Cities and Society, 42, 259-275.
  • Pan, L., Yao, E., Yang, Y. (2016). Impact Analysis of Traffic-Related Air Pollution Based on Real-Time Traffic and Basic Meteorological İnformation. Journal of Environmental Management, 183, 510- 520. DOI: 10.1016/j.jenvman.2016.09.010
  • Piracha, A., & Chaudhary, M. T. (2022). Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability, 14(15), 9234.
  • Schwartz, S. E. (2022). The Greenhouse Effect and Climate Change. American Journal of Physics, 86(9), 645-656. DOI: 10.1002/esso- ar.81ea1b43594141c6.558e238c20a84445.1
  • WHO/UNEP, E. (1992). Urban Air Pollution in Megacities of the World (1st ed.). Oxford: Blackwell Reference
  • URL-1: https://unfccc.int/ • URL:2: https://unfccc.int/most-requested/key-aspects-of-the-pa- ris-agreement
  • URL-3: https://eur-lex.europa.eu
  • URL-4: https://data.tuik.gov.tr
  • URL-5: http://www.kgm.gov.tr
  • URL-6: https://earth.google.com/
  • URL-7: https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/ Workspace
  • URL-8: https://www.mevzuat.gov.tr/
  • URL-9: https://www.who.int/news-room/questions-and-answers/ item/who-global-air-quality-guidelines
  • URL-10: https://www.eea.europa.eu
  • URL-11: https://kocaeli.tarimorman.gov.tr/Menu/24/Demografik- Yapi
  • URL-12: http://www.kocaeli.gov.tr/kocaeli-ekonomisinde-sa- nayinin-yeri
  • URL-13: https://sim.csb.gov.tr
  • URL-14: https://mthmm.csb.gov.tr/hava-kalitesi-olcum-istas- yonlarimiz-i-85693

THE IMPACT ON AIR POLLUTION İN KOCAELI OF VEHICLE TRAFFIC ON THE PLANNED SOUTH MARARA HIGHWAY

Year 2025, Issue: 8 ÇEVRE, 63 - 73, 05.02.2025

Abstract

In this study, the effect of vehicle traffic on the planned South Marmara Highway on air pollution in Kocaeli province was evaluated. Within the scope of the study, different 'Scenarios' were created depending on the number and types of vehicles using/will use the South Marmara Highway. The scenarios are based on the assumptions that 20%, 30% and 35% of the vehicles using the existing Gölcük-Altınova road numbered 130-01 will use the South Marmara Highway. The pollutants evaluated within the scope of the study are sulfur dioxide (SO2), particulate matter (PM10), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOX) and non-methane volatile organic compounds (NMVOC). The calculated traffic-related emissions related to these pollutants were entered into the EPA-approved air quality distribution model AERMOD and pollution distribution maps for the region were created. The determined maximum pollutant concentrations were compared with national and international standards.
In comparison to the current situation, scenario 3's 1-hour maximum emission concentrations for NOX, PM10, NMVOC, CO, CO2, and SO2 decreased by 28%, 53%, 49%, 50%, 49%, and 35%, according to results of modelling. On the other hand, annual max concentrations reduced by -7%, 53%, 49%, 49%, 49%, 34%. The receptor points where the maximum pollutant concentration was observed were determined as Izmit City Center (746985.59; 4516448.29) and Dilovası (712439.79; 4518354.94). When the maximum pollutant concentrations determined by the modeling study were compared with national (HKKDY) and international (WHO, EU) limit values; NOX was above the limit values given for NO2, PM10; although it meets the annual limit value in HKDYY and EU, it had been determined that it exceeded the WHO limit value. However, in scenario cases (scenario 1, scenario 2 and scenario 3) the WHO limit value was not exceeded.

References

  • Adeyanju, A. A., Manohar, K. (2017). Effects of Vehicular Emission on Environmental Pollution in Lagos. Sci-Afric J Sci Issues Res Essays, 5(4), 34-51.
  • Altuntaş, O. (2019). Osmangazi Köprüsünün Kocaeli İli Körfez Bölgesindeki Taşıt Kaynaklı Emisyon Kirliliğine Etkisinin Modellenmesi, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 591868.
  • Anderson, M. L. (2014). Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion. American Economic Review, 104(9), 2763–2796. DOI: 10.1257/aer.104.9.2763.
  • Başaran, Y. (2009). Dilovası Çanağı’nda Ozon Prekürsörü Olan NOx Dağılımlarının İncelenmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 251524.
  • Chen, Y., & Whalley, A. (2012). Green Infrastructure: The Effects of Urban Rail Transit on Air Quality. American Economic Journal: Economic Policy, 4(1), 58-97. DOI: 10.1257/pol.4.1.58
  • Egede, P., Dettmer, T., Herrmann, C., Kara, S. (2015). Life Cycle Assessment of Electric Vehicles–A Framework to Consider İnfluencing Factors. Procedia CIRP, 29, 233-238.
  • Ergün Yüksel, B., Çetin Doğruparmak, Ş., Pekey, B., & Pekey, H. (2024). Assessment of Environmental Odor Pollution Using a Dispersion Model in an Industrialized Urban Area of Kocaeli, Turkey. CLEAN–Soil, Air, Water, 52(5), 2300221.
  • Franzò, S., Nasca, A. (2020). The Environmental Impact of Electric Vehicles: A Comparative LCA-Based Evaluation Framework and Its Application to The Italian Context. Fifteenth International Conference on Ecological Vehicles and Renewable Energies. Monte-Carlo, Monaco, 10-12 September 2020.
  • Huang, S. K., Kuo, L., Chou, K. L. (2016). The Applicability of Marginal Abatement Cost Approach: A Comprehensive Review. Journal of Cleaner Production, 127, 59-71.
  • IPCC (2006). Guidelines for National Greenhouse Gas Inventories: Mobile Combustion, https://www.ipcc-nggip.iges.or.jp/publi- c/2006gl/
  • Jamshidi Kalajahi, M., Khazini, L., Rashidi, Y., Zeinali Heris, S. (2020). Development of Reduction Scenarios Based on Urban Emission Estimation and Dispersion of Exhaust Pollutants from Light Duty Public Transport: Case of Tabriz, Iran. Emission Control Science and Technology, 6, 86-104.
  • Jin, T., & Fu, L. (2005). Application of GIS to Modified Models of Vehicle Emission Dispersion. Atmospheric Environment, 39(34), 6326-6333.
  • Lazăr, D., Minea, A., Purcel, A. A. (2019). Pollution and Economic Growth: Evidence from Central and Eastern European countries. Energy Economics, 81, 1121-1131
  • Martins, N. R., & Da Graca, G. C. (2018). Impact of PM2. 5 in Indoor Urban Environments: A review. Sustainable Cities and Society, 42, 259-275.
  • Pan, L., Yao, E., Yang, Y. (2016). Impact Analysis of Traffic-Related Air Pollution Based on Real-Time Traffic and Basic Meteorological İnformation. Journal of Environmental Management, 183, 510- 520. DOI: 10.1016/j.jenvman.2016.09.010
  • Piracha, A., & Chaudhary, M. T. (2022). Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability, 14(15), 9234.
  • Schwartz, S. E. (2022). The Greenhouse Effect and Climate Change. American Journal of Physics, 86(9), 645-656. DOI: 10.1002/esso- ar.81ea1b43594141c6.558e238c20a84445.1
  • WHO/UNEP, E. (1992). Urban Air Pollution in Megacities of the World (1st ed.). Oxford: Blackwell Reference
  • URL-1: https://unfccc.int/ • URL:2: https://unfccc.int/most-requested/key-aspects-of-the-pa- ris-agreement
  • URL-3: https://eur-lex.europa.eu
  • URL-4: https://data.tuik.gov.tr
  • URL-5: http://www.kgm.gov.tr
  • URL-6: https://earth.google.com/
  • URL-7: https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/ Workspace
  • URL-8: https://www.mevzuat.gov.tr/
  • URL-9: https://www.who.int/news-room/questions-and-answers/ item/who-global-air-quality-guidelines
  • URL-10: https://www.eea.europa.eu
  • URL-11: https://kocaeli.tarimorman.gov.tr/Menu/24/Demografik- Yapi
  • URL-12: http://www.kocaeli.gov.tr/kocaeli-ekonomisinde-sa- nayinin-yeri
  • URL-13: https://sim.csb.gov.tr
  • URL-14: https://mthmm.csb.gov.tr/hava-kalitesi-olcum-istas- yonlarimiz-i-85693
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Research Article
Authors

Fatma Soslu This is me

Şenay Çetin Doğruparmak 0000-0001-5968-2948

Publication Date February 5, 2025
Submission Date December 6, 2024
Acceptance Date February 4, 2025
Published in Issue Year 2025 Issue: 8 ÇEVRE

Cite

APA Soslu, F., & Doğruparmak, Ş. Ç. (2025). YAPILMASI PLANLANAN GÜNEY MARMARA OTOYOLUNDAKİ TAŞIT TRAFİĞİNİN KOCAELİ İLİ HAVA KİRLİLİĞİNE ETKİSİ. Şura Akademi(8 ÇEVRE), 63-73.