Research Article
BibTex RIS Cite

Utilization of Solar Energy in Cooling Systems: An Energy Performance Assessment for Shopping Malls

Year 2025, Issue: 8 ÇEVRE, 131 - 141, 05.02.2025

Abstract

In this study, the applicability of solar energy assisted absorption cooling systems instead of electrical driven mechanical cooling systems, which are widely used in shopping centres, is investigated. When the consumption profiles of these enterprises are examined, it is noteworthy that the increased cooling demand in the summer months coincides with the solar energy potential. In addition, the fact that the total construction area is high compared to the roof area provides a suitable infrastructure for the installation of large solar collectors and makes the use of solar energy in cooling advantageous. With this method, a sustainable air conditioning model emerges in which the building produces and consumes its own energy. According to the modelling results, the Parabolic Trough Collector (PTC) system and absorption cooling integration can meet 60-68% of the total cooling demand from solar energy. In SM2 scenario, it is determined that external energy demand can be reduced by approximately 90% with storage integration. In the SM1 and SM1.5 scenarios, the roof area required for PTC installation is 4,000 m², while this area requirement increases to 8,000 m² in the SM2 scenario. The amount of energy recovery can be increased by applying advanced technologies in energy storage and optimising the system parameters. In this way, the return on investment will be reduced.

References

  • Abd Majid, M. A., Sulaiman, S. A., Fujii, T. ve Naono. (2014). Studies on Steam Absorption Chillers Performance at a Cogeneration Plant. MATEC Web of Conferences, 13, 05003. doi:10.1051/matec- conf/20141305003
  • Ahmadu, T. O. (2019). Experimental evaluation of a 3 kW Absorption Chiller Prototype. Nigerian Journal of Technology, 38(2), 334. doi:10.4314/njt.v38i2.9
  • Amaris, C., Rodriguez, A. ve Bourouis, M. (2022). Technical and Environmental Performance of a Solar/Gas Driven Absorption Chiller using NH3/LiNO3. Journal of Renewable Energies, 25(1), 27-42. doi:10.54966/jreen.v25i1.1069
  • Ayou, D. S. ve Coronas, A. (2020, 1 Haziran). New Developments and Progress in Absorption Chillers for Solar Cooling Applications. Applied Sciences (Switzerland). MDPI AG. doi:10.3390/app10124073
  • Badea, N., Badea, G. V., Epureanu, A. ve Frumuşanu, G. (2016). Solar Cooling - Comparative Study between Thermal and Electrical Use in Industrial Buildings. IOP Conference Series: Materials Science and Engineering içinde (C. 145). Institute of Physics Publishing. doi:10.1088/1757-899X/145/2/022027
  • Bermejo, P., Pino, F. J. ve Rosa, F. (2010). Solar Absorption Cooling Plant in Seville. Solar Energy, 84(8), 1503-1512. doi:10.1016/j.solener.2010.05.012
  • Berus, Y. ve Benteşen Yakut, Y. (2024). Derin Öğrenme (1D-CNN, RNN, LSTM, BiLSTM) ile Enerji Tüketim Tahmini: Diyarbakır AVM Örneği. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1415055
  • Çankaya, N. (2024). Deriving Power Consumption Models From Energy Bills for Optimal Sizing of Hybrid Power in Commercial Buildings. IEEE Access, 12, 115042-115054. doi:10.1109/ ACCESS.2024.3444710
  • Dış İşleri Bakanlığı. (2024). URL-Paris Anlaşması. 15 Aralık 2024 tarihinde https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa adresinden erişildi.
  • Drosou, V., Kosmopoulos, P. ve Papadopoulos, A. (2016). Solar Cooling System using Concentrating Collectors for Office Buildings: A Case Study for Greece. Renewable Energy, 97, 697- 708. doi:10.1016/j.renene.2016.06.027
  • Duffie, J. A. ve Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley. doi:10.1002/9781118671603
  • Figaj, R. ve Żoładek, M. (2021). Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions. Energies, 14(4). doi:10.3390/en14041142
  • H. Ahmed, M. (2018). Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System. International Journal of Thermal and Environmental Engineering, 17(1), 41-50. oi:10.5383/ijtee.17.01.005
  • İldeş, E., Taşdemir, F. D. ve Umaroğulları, F. (2021). İç Mekân Konfor Şartlarının AVM (Alışveriş Merkezi) Çalışanları Üzerindeki Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(3), 406- 429. doi:10.29130/dubited.755756
  • Karaali, R. (2017). Exergetic Comparison of Single and Double Effect Absorption Cooling Cycles Tek ve Çift Etkili Absorpsiyonlu Soğutma Çevrimlerinin Ekserji Yönünden Karşılaştırılması. Karaelmas Fen ve Müh. Derg (C. 7). http://fbd.beun.edu.tr adresinden erişildi.
  • Lee, R., Choi, M., Yoon, J. ve Kim, D. (2023). Impacts of Lighting and Plug Load Variations on Residential Building Energy Consumption Targeting Zero Energy Building Goals. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106962
  • Leung, M. K. H., Tso, C. Y., Wu, W., Zheng, Z. ve Cao, J. (2020). Chillers of Air-Conditioning Systems: An Overview. HKIE Transactions Hong Kong Institution of Engineers, 27(3), 113-127. doi:10.33430/ V27N3THIE-2019-0055
  • OneBuilding.Org. (2024). https://climate.onebuilding.org/WMO_ Region_6_Europe/TUR_Turkey/index.html adresinden erişildi.
  • Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A. ve Wilczynski, E. (2022). Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments. Sustainability (Switzerland), 14(5). doi:10.3390/ su14052971
  • Redpath, D., Paneri, A., Singh, H., Ghitas, A. ve Sabry, M. (2022). Design of a Building-Scale Space Solar Cooling System Using TRNSYS. Sustainability (Switzerland), 14(18). doi:10.3390/su141811549
  • Resmi Gazete. (2008). https://www.mevzuat.gov.tr/File/ GeneratePdf?mevzuatNo =13594&mevzuatTur=KurumVeKurulus- Yonetmeligi&mevzuatTertip=5. 15 Aralık 2024 tarihinde https://www.mevzuat.gov.tr/File/GeneratePdf? mezuatNo=13594&- mevzuatTur=KurumVeKurulus Yonetmeligi&mevzuatTertip=5 adresinden erişildi.
  • Abd Majid, M. A., Sulaiman, S. A., Fujii, T. ve Naono. (2014). Studies on Steam Absorption Chillers Performance at a Cogeneration Plant. MATEC Web of Conferences, 13, 05003. doi:10.1051/matec- conf/20141305003
  • Ahmadu, T. O. (2019). Experimental evaluation of a 3 kW Absorption Chiller Prototype. Nigerian Journal of Technology, 38(2), 334. doi:10.4314/njt.v38i2.9
  • Amaris, C., Rodriguez, A. ve Bourouis, M. (2022). Technical and Environmental Performance of a Solar/Gas Driven Absorption Chiller using NH3/LiNO3. Journal of Renewable Energies, 25(1), 27-42. doi:10.54966/jreen.v25i1.1069
  • Ayou, D. S. ve Coronas, A. (2020, 1 Haziran). New Developments and Progress in Absorption Chillers for Solar Cooling Applications. Applied Sciences (Switzerland). MDPI AG. doi:10.3390/app10124073
  • Badea, N., Badea, G. V., Epureanu, A. ve Frumuşanu, G. (2016). Solar Cooling - Comparative Study between Thermal and Electrical Use in Industrial Buildings. IOP Conference Series: Materials Scienceand Engineering içinde (C. 145). Institute of Physics Publishing. doi:10.1088/1757-899X/145/2/022027
  • Bermejo, P., Pino, F. J. ve Rosa, F. (2010). Solar Absorption Cooling Plant in Seville. Solar Energy, 84(8), 1503-1512. doi:10.1016/j.solener.2010.05.012
  • Berus, Y. ve Benteşen Yakut, Y. (2024). Derin Öğrenme (1D-CNN, RNN, LSTM, BiLSTM) ile Enerji Tüketim Tahmini: Diyarbakır AVM Örneği. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1415055
  • Çankaya, N. (2024). Deriving Power Consumption Models From Energy Bills for Optimal Sizing of Hybrid Power in Commercial Buildings. IEEE Access, 12, 115042-115054. doi:10.1109/ ACCESS.2024.3444710
  • Dış İşleri Bakanlığı. (2024). URL-Paris Anlaşması. 15 Aralık 2024 tarihinde https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa adre- sinden erişildi.
  • Drosou, V., Kosmopoulos, P. ve Papadopoulos, A. (2016). Solar Cooling System using Concentrating Collectors for Office Buildings: A Case Study for Greece. Renewable Energy, 97, 697- 708. doi:10.1016/j.renene.2016.06.027
  • Duffie, J. A. ve Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley. doi:10.1002/9781118671603
  • Figaj, R. ve Żoładek, M. (2021). Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions. Energies, 14(4). doi:10.3390/en14041142
  • H. Ahmed, M. (2018). Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System. International Journal of Thermal and Environmental Engineering, 17(1), 41-50. doi:10.5383/ijtee.17.01.005
  • İldeş, E., Taşdemir, F. D. ve Umaroğulları, F. (2021). İç Mekân Konfor Şartlarının AVM (Alışveriş Merkezi) Çalışanları Üzerindeki Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(3), 406- 429. doi:10.29130/dubited.755756
  • Karaali, R. (2017). Exergetic Comparison of Single and Double Effect Absorption Cooling Cycles Tek ve Çift Etkili Absorpsiyonlu Soğutma Çevrimlerinin Ekserji Yönünden Karşılaştırılması. Karaelmas Fen ve Müh. Derg (C. 7). http://fbd.beun.edu.tr adresinden erişildi.
  • Lee, R., Choi, M., Yoon, J. ve Kim, D. (2023). Impacts of Lighting and Plug Load Variations on Residential Building Energy Consumption Targeting Zero Energy Building Goals. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106962
  • Leung, M. K. H., Tso, C. Y., Wu, W., Zheng, Z. ve Cao, J. (2020). Chillers of Air-Conditioning Systems: An Overview. HKIE Transactions Hong Kong Institution of Engineers, 27(3), 113-127. doi:10.33430/ V27N3THIE-2019-0055
  • OneBuilding.Org. (2024). https://climate.onebuilding.org/WMO_ Region_6_Europe/TUR_Turkey/index.html adresinden erişildi.
  • Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A. ve Wilczynski, E. (2022). Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments. Sustainability (Switzerland), 14(5). doi:10.3390/ su14052971
  • Redpath, D., Paneri, A., Singh, H., Ghitas, A. ve Sabry, M. (2022). Design of a Building-Scale Space Solar Cooling System Using TRNSYS. Sustainability (Switzerland), 14(18). doi:10.3390/su141811549
  • Resmi Gazete. (2008). https://www.mevzuat.gov.tr/File/ GeneratePdf?mevzuatNo =13594&mevzuatTur=KurumVeKuru- lusYonetmeligi&mevzuatTertip=5. 15 Aralık 2024 tarihinde https://www.mevzuat.gov.tr/File/GeneratePdf? mevzuatNo=13594&- mevzuatTur=KurumVeKurulus Yonetmeligi&mevzuatTertip=5 adresinden erişildi.
  • Saleh, A. (2022). Modeling and Performance Analysis of a Solar Pond Integrated with an Absorption Cooling System. Energies, 15(22). doi:10.3390/en15228327
  • Sarbu, I. ve Sebarchievici, C. (2015, 17 Ağustos). General Review of Solar-Powered Closed Sorption Refrigeration Systems. Energy Conversion and Management. Elsevier Ltd. doi:10.1016/j.enconman.2015.07.084
  • Tawalbeh, M., Salameh, T., Albawab, M., Al-Othman, A., Assad, M. E. H. ve Alami, A. H. (2020). Parametric Study of a Single Effect Lithium Bromide-Water Absorption Chiller Powered by a Renewable Heat Source. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(3), 464-475. doi:10.13044/j.sdewes.d7.0290
  • Velázquez, N., García-Valladares, O., Sauceda, D. ve Beltrán, R. (2010). Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle. Energy Conversion and Management, 51(3), 434-445. doi:10.1016/j.enconman.2009.10.005
  • Wagner, M. J. ve Gilman, P. (2011). Technical Manual for the SAM Physical Trough Model. http://www.osti.gov/bridge adresinden erişildi.
  • Wall, M., Munari Probst, M. C., Roecker, C., Dubois, M. C., Horvat, M., Jørgensen, O. B. ve Kappel, K. (2012). Achieving solar energy in architecture - IEA SHC Task 41. Energy Procedia içinde (C. 30, ss. 1250-1260). Elsevier Ltd. doi:10.1016/j.egypro.2012.11.138
  • Wang, J., Yan, R., Wang, Z., Zhang, X. ve Shi, G. (2018). Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies, 11(10). doi:10.3390/en11102679
  • Yılmaz, O. ve Atik, K. (2022). Çanakkale Kent Merkezindeki Leed Sertifikalı Yeşil Binalar Üzerine Araştırmalar: Çanakkale Esas 17 Burda AVM Örneği. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 8(1), 88-108. doi:10.34186/klujes.1105837
  • Zheng, X., Shi, R., Wang, Y., You, S., Zhang, H., Xia, J. ve Wei, S. (2019). Mathematical Modeling and Performance Analysis of an Integrated Solar Heating and Cooling System Driven by Parabolic Trough Collector and Double-Effect Absorption Chiller. Energy and Buildings, 202. doi:10.1016/j.enbuild.2019.109400

Güneş Enerjisinin Soğutma Sistemlerinde Kullanımı: AVM için Enerji Performansı Değerlendirmesi

Year 2025, Issue: 8 ÇEVRE, 131 - 141, 05.02.2025

Abstract

Bu çalışmada, AVM'lerde yaygın olarak kullanılan elektrikli tahrikli mekanik soğutma sistemlerinin yerine güneş enerjisi destekli absorpsiyonlu soğutma sistemlerinin uygulanabilirliği incelenmiştir. Bu işletmelerde tüketim profilleri incelendiğinde, yaz aylarında artan soğutma ihtiyacının, güneş enerjisi potansiyeliyle örtüşmesi dikkat çekmektedir. Ayrıca, toplam inşaat alanının çatı alanına oranla yüksek olması, geniş güneş kolektörlerinin kurulumu için uygun bir altyapı sunmakta ve güneş enerjisinin soğutmada kullanımını avantajlı hale getirmektedir. Bu yöntemle, yapının kendi enerjisini üretip tükettiği sürdürülebilir bir iklimlendirme modeli ortaya çıkmaktadır. Modelleme sonuçlarına göre, Parabolik Oluk Kolektör (PTC) sistemi ve absorpsiyonlu soğutma entegrasyonu, toplam soğutma talebinin %60-68’ini güneş enerjisinden karşılayabilir. SM2 senaryosunda depolama entegrasyonu ile harici enerji ihtiyacının yaklaşık %90 oranında azaltılabileceği belirlenmiştir. SM1 ve SM1.5 senaryosunda PTC kurulumu için gerekli çatı alanı 4.000 m², SM2 senaryosunda bu alan ihtiyacı 8.000 m²’ye çıkmaktadır. Enerji depolamada ileri teknolojilerin uygulanması ve sistem parametrelerinin optimizasyonu ile enerji kazanım miktarı artırılabilir. Bu sayede yatırımın geri dönüş süresi de azalacaktır.

References

  • Abd Majid, M. A., Sulaiman, S. A., Fujii, T. ve Naono. (2014). Studies on Steam Absorption Chillers Performance at a Cogeneration Plant. MATEC Web of Conferences, 13, 05003. doi:10.1051/matec- conf/20141305003
  • Ahmadu, T. O. (2019). Experimental evaluation of a 3 kW Absorption Chiller Prototype. Nigerian Journal of Technology, 38(2), 334. doi:10.4314/njt.v38i2.9
  • Amaris, C., Rodriguez, A. ve Bourouis, M. (2022). Technical and Environmental Performance of a Solar/Gas Driven Absorption Chiller using NH3/LiNO3. Journal of Renewable Energies, 25(1), 27-42. doi:10.54966/jreen.v25i1.1069
  • Ayou, D. S. ve Coronas, A. (2020, 1 Haziran). New Developments and Progress in Absorption Chillers for Solar Cooling Applications. Applied Sciences (Switzerland). MDPI AG. doi:10.3390/app10124073
  • Badea, N., Badea, G. V., Epureanu, A. ve Frumuşanu, G. (2016). Solar Cooling - Comparative Study between Thermal and Electrical Use in Industrial Buildings. IOP Conference Series: Materials Science and Engineering içinde (C. 145). Institute of Physics Publishing. doi:10.1088/1757-899X/145/2/022027
  • Bermejo, P., Pino, F. J. ve Rosa, F. (2010). Solar Absorption Cooling Plant in Seville. Solar Energy, 84(8), 1503-1512. doi:10.1016/j.solener.2010.05.012
  • Berus, Y. ve Benteşen Yakut, Y. (2024). Derin Öğrenme (1D-CNN, RNN, LSTM, BiLSTM) ile Enerji Tüketim Tahmini: Diyarbakır AVM Örneği. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1415055
  • Çankaya, N. (2024). Deriving Power Consumption Models From Energy Bills for Optimal Sizing of Hybrid Power in Commercial Buildings. IEEE Access, 12, 115042-115054. doi:10.1109/ ACCESS.2024.3444710
  • Dış İşleri Bakanlığı. (2024). URL-Paris Anlaşması. 15 Aralık 2024 tarihinde https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa adresinden erişildi.
  • Drosou, V., Kosmopoulos, P. ve Papadopoulos, A. (2016). Solar Cooling System using Concentrating Collectors for Office Buildings: A Case Study for Greece. Renewable Energy, 97, 697- 708. doi:10.1016/j.renene.2016.06.027
  • Duffie, J. A. ve Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley. doi:10.1002/9781118671603
  • Figaj, R. ve Żoładek, M. (2021). Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions. Energies, 14(4). doi:10.3390/en14041142
  • H. Ahmed, M. (2018). Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System. International Journal of Thermal and Environmental Engineering, 17(1), 41-50. oi:10.5383/ijtee.17.01.005
  • İldeş, E., Taşdemir, F. D. ve Umaroğulları, F. (2021). İç Mekân Konfor Şartlarının AVM (Alışveriş Merkezi) Çalışanları Üzerindeki Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(3), 406- 429. doi:10.29130/dubited.755756
  • Karaali, R. (2017). Exergetic Comparison of Single and Double Effect Absorption Cooling Cycles Tek ve Çift Etkili Absorpsiyonlu Soğutma Çevrimlerinin Ekserji Yönünden Karşılaştırılması. Karaelmas Fen ve Müh. Derg (C. 7). http://fbd.beun.edu.tr adresinden erişildi.
  • Lee, R., Choi, M., Yoon, J. ve Kim, D. (2023). Impacts of Lighting and Plug Load Variations on Residential Building Energy Consumption Targeting Zero Energy Building Goals. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106962
  • Leung, M. K. H., Tso, C. Y., Wu, W., Zheng, Z. ve Cao, J. (2020). Chillers of Air-Conditioning Systems: An Overview. HKIE Transactions Hong Kong Institution of Engineers, 27(3), 113-127. doi:10.33430/ V27N3THIE-2019-0055
  • OneBuilding.Org. (2024). https://climate.onebuilding.org/WMO_ Region_6_Europe/TUR_Turkey/index.html adresinden erişildi.
  • Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A. ve Wilczynski, E. (2022). Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments. Sustainability (Switzerland), 14(5). doi:10.3390/ su14052971
  • Redpath, D., Paneri, A., Singh, H., Ghitas, A. ve Sabry, M. (2022). Design of a Building-Scale Space Solar Cooling System Using TRNSYS. Sustainability (Switzerland), 14(18). doi:10.3390/su141811549
  • Resmi Gazete. (2008). https://www.mevzuat.gov.tr/File/ GeneratePdf?mevzuatNo =13594&mevzuatTur=KurumVeKurulus- Yonetmeligi&mevzuatTertip=5. 15 Aralık 2024 tarihinde https://www.mevzuat.gov.tr/File/GeneratePdf? mezuatNo=13594&- mevzuatTur=KurumVeKurulus Yonetmeligi&mevzuatTertip=5 adresinden erişildi.
  • Abd Majid, M. A., Sulaiman, S. A., Fujii, T. ve Naono. (2014). Studies on Steam Absorption Chillers Performance at a Cogeneration Plant. MATEC Web of Conferences, 13, 05003. doi:10.1051/matec- conf/20141305003
  • Ahmadu, T. O. (2019). Experimental evaluation of a 3 kW Absorption Chiller Prototype. Nigerian Journal of Technology, 38(2), 334. doi:10.4314/njt.v38i2.9
  • Amaris, C., Rodriguez, A. ve Bourouis, M. (2022). Technical and Environmental Performance of a Solar/Gas Driven Absorption Chiller using NH3/LiNO3. Journal of Renewable Energies, 25(1), 27-42. doi:10.54966/jreen.v25i1.1069
  • Ayou, D. S. ve Coronas, A. (2020, 1 Haziran). New Developments and Progress in Absorption Chillers for Solar Cooling Applications. Applied Sciences (Switzerland). MDPI AG. doi:10.3390/app10124073
  • Badea, N., Badea, G. V., Epureanu, A. ve Frumuşanu, G. (2016). Solar Cooling - Comparative Study between Thermal and Electrical Use in Industrial Buildings. IOP Conference Series: Materials Scienceand Engineering içinde (C. 145). Institute of Physics Publishing. doi:10.1088/1757-899X/145/2/022027
  • Bermejo, P., Pino, F. J. ve Rosa, F. (2010). Solar Absorption Cooling Plant in Seville. Solar Energy, 84(8), 1503-1512. doi:10.1016/j.solener.2010.05.012
  • Berus, Y. ve Benteşen Yakut, Y. (2024). Derin Öğrenme (1D-CNN, RNN, LSTM, BiLSTM) ile Enerji Tüketim Tahmini: Diyarbakır AVM Örneği. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1415055
  • Çankaya, N. (2024). Deriving Power Consumption Models From Energy Bills for Optimal Sizing of Hybrid Power in Commercial Buildings. IEEE Access, 12, 115042-115054. doi:10.1109/ ACCESS.2024.3444710
  • Dış İşleri Bakanlığı. (2024). URL-Paris Anlaşması. 15 Aralık 2024 tarihinde https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa adre- sinden erişildi.
  • Drosou, V., Kosmopoulos, P. ve Papadopoulos, A. (2016). Solar Cooling System using Concentrating Collectors for Office Buildings: A Case Study for Greece. Renewable Energy, 97, 697- 708. doi:10.1016/j.renene.2016.06.027
  • Duffie, J. A. ve Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley. doi:10.1002/9781118671603
  • Figaj, R. ve Żoładek, M. (2021). Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions. Energies, 14(4). doi:10.3390/en14041142
  • H. Ahmed, M. (2018). Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System. International Journal of Thermal and Environmental Engineering, 17(1), 41-50. doi:10.5383/ijtee.17.01.005
  • İldeş, E., Taşdemir, F. D. ve Umaroğulları, F. (2021). İç Mekân Konfor Şartlarının AVM (Alışveriş Merkezi) Çalışanları Üzerindeki Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(3), 406- 429. doi:10.29130/dubited.755756
  • Karaali, R. (2017). Exergetic Comparison of Single and Double Effect Absorption Cooling Cycles Tek ve Çift Etkili Absorpsiyonlu Soğutma Çevrimlerinin Ekserji Yönünden Karşılaştırılması. Karaelmas Fen ve Müh. Derg (C. 7). http://fbd.beun.edu.tr adresinden erişildi.
  • Lee, R., Choi, M., Yoon, J. ve Kim, D. (2023). Impacts of Lighting and Plug Load Variations on Residential Building Energy Consumption Targeting Zero Energy Building Goals. Journal of Building Engineering, 75. doi:10.1016/j.jobe.2023.106962
  • Leung, M. K. H., Tso, C. Y., Wu, W., Zheng, Z. ve Cao, J. (2020). Chillers of Air-Conditioning Systems: An Overview. HKIE Transactions Hong Kong Institution of Engineers, 27(3), 113-127. doi:10.33430/ V27N3THIE-2019-0055
  • OneBuilding.Org. (2024). https://climate.onebuilding.org/WMO_ Region_6_Europe/TUR_Turkey/index.html adresinden erişildi.
  • Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A. ve Wilczynski, E. (2022). Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments. Sustainability (Switzerland), 14(5). doi:10.3390/ su14052971
  • Redpath, D., Paneri, A., Singh, H., Ghitas, A. ve Sabry, M. (2022). Design of a Building-Scale Space Solar Cooling System Using TRNSYS. Sustainability (Switzerland), 14(18). doi:10.3390/su141811549
  • Resmi Gazete. (2008). https://www.mevzuat.gov.tr/File/ GeneratePdf?mevzuatNo =13594&mevzuatTur=KurumVeKuru- lusYonetmeligi&mevzuatTertip=5. 15 Aralık 2024 tarihinde https://www.mevzuat.gov.tr/File/GeneratePdf? mevzuatNo=13594&- mevzuatTur=KurumVeKurulus Yonetmeligi&mevzuatTertip=5 adresinden erişildi.
  • Saleh, A. (2022). Modeling and Performance Analysis of a Solar Pond Integrated with an Absorption Cooling System. Energies, 15(22). doi:10.3390/en15228327
  • Sarbu, I. ve Sebarchievici, C. (2015, 17 Ağustos). General Review of Solar-Powered Closed Sorption Refrigeration Systems. Energy Conversion and Management. Elsevier Ltd. doi:10.1016/j.enconman.2015.07.084
  • Tawalbeh, M., Salameh, T., Albawab, M., Al-Othman, A., Assad, M. E. H. ve Alami, A. H. (2020). Parametric Study of a Single Effect Lithium Bromide-Water Absorption Chiller Powered by a Renewable Heat Source. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(3), 464-475. doi:10.13044/j.sdewes.d7.0290
  • Velázquez, N., García-Valladares, O., Sauceda, D. ve Beltrán, R. (2010). Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle. Energy Conversion and Management, 51(3), 434-445. doi:10.1016/j.enconman.2009.10.005
  • Wagner, M. J. ve Gilman, P. (2011). Technical Manual for the SAM Physical Trough Model. http://www.osti.gov/bridge adresinden erişildi.
  • Wall, M., Munari Probst, M. C., Roecker, C., Dubois, M. C., Horvat, M., Jørgensen, O. B. ve Kappel, K. (2012). Achieving solar energy in architecture - IEA SHC Task 41. Energy Procedia içinde (C. 30, ss. 1250-1260). Elsevier Ltd. doi:10.1016/j.egypro.2012.11.138
  • Wang, J., Yan, R., Wang, Z., Zhang, X. ve Shi, G. (2018). Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies, 11(10). doi:10.3390/en11102679
  • Yılmaz, O. ve Atik, K. (2022). Çanakkale Kent Merkezindeki Leed Sertifikalı Yeşil Binalar Üzerine Araştırmalar: Çanakkale Esas 17 Burda AVM Örneği. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 8(1), 88-108. doi:10.34186/klujes.1105837
  • Zheng, X., Shi, R., Wang, Y., You, S., Zhang, H., Xia, J. ve Wei, S. (2019). Mathematical Modeling and Performance Analysis of an Integrated Solar Heating and Cooling System Driven by Parabolic Trough Collector and Double-Effect Absorption Chiller. Energy and Buildings, 202. doi:10.1016/j.enbuild.2019.109400
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Research Article
Authors

Süleyman Sapmaz 0000-0002-9475-5986

İbrahim Kılıçaslan

Publication Date February 5, 2025
Submission Date December 15, 2024
Acceptance Date February 4, 2025
Published in Issue Year 2025 Issue: 8 ÇEVRE

Cite

APA Sapmaz, S., & Kılıçaslan, İ. (2025). Güneş Enerjisinin Soğutma Sistemlerinde Kullanımı: AVM için Enerji Performansı Değerlendirmesi. Şura Akademi(8 ÇEVRE), 131-141.