Review
BibTex RIS Cite

Yapay Zekânın Sosyal ve Doğa Bilimleri Araştırmalarında Kullanımındaki Eğilimler

Year 2025, Volume: 4 Issue: 1, 100 - 132, 31.05.2025
https://doi.org/10.58239/tamde.2025.01.006.x

Abstract

Bu makale, yapay zekânın (YZ) sosyal bilimler ve doğa bilimleri araştırmalarında kullanımındaki eğilimleri ele almaktadır. Giriş bölümünde, YZ'nin her iki alanda da geleneksel yöntemlerin sınırlamalarını aşmada ve doğa bilimlerinde veri analizini hızlandırmada önemli bir araç haline geldiği vurgulanmaktadır. Araştırma yöntemi olarak bibliyometrik analiz kullanılmış olup, veriler Google Scholar'dan sosyal ve doğa bilimlerinde YZ ile ilgili anahtar kelimeler aracılığıyla toplanmıştır. İçerik değerlendirme ve hariç tutma süreciyle uygun makaleler seçilmiş ve sonuçta 1.000 sosyal bilim yayını ile 999 doğa bilim yayını elde edilmiştir. Bu yayınlar VOSviewer ile daha ayrıntılı analiz edilmiştir. Araştırma bulgularına göre, sosyal bilimlerde YZ, özellikle yükseköğretim ve sosyal politika analizinde daha hızlı veri işleme yoluyla araştırma etkinliğini artırmak amacıyla yaygın olarak kullanılmaktadır. Ayrıca, sosyal bilimlerdeki YZ çalışmaları etik, düzenleme ve insan-YZ etkileşimi gibi alanlarda genişlemektedir. Doğa bilimlerinde ise YZ, kaynak yönetimi, çevre araştırmaları ve sağlık sektörü gibi alanlarda – hastalık teşhisi ve ilaç geliştirme dahil –hayati bir rol oynamaktadır. Son eğilimler, bilimsel araştırmalarda büyük dil modelleri ve doğal dil işleme kullanımının arttığını da göstermektedir. Çalışma, YZ'nin hem sosyal hem de doğa bilimleri araştırmalarında kilit bir unsur haline geldiği sonucuna varmaktadır. Sosyal bilim araştırmacılarına, psikoloji, hukuk ve eğitim üzerindeki YZ etkisinin daha fazla incelenmesi ve bibliyometrik yöntemlerin kullanılması önerilmektedir. Öte yandan, doğa bilimleri araştırmacılarına YZ şeffaflığını artırmaya, daha doğru teknolojiler geliştirmeye ve YZ'yi çevresel ve endüstriyel araştırmalarda uygulamaya odaklanmaları tavsiye edilmektedir. YZ gelişiminin etik ve kapsayıcı kalmasını sağlamak için disiplinler arası iş birliği gereklidir.

References

  • Abdelaal, M. (2024). AI in manufacturing: Market analysis and opportunities (arXiv:2407.05426). arXiv. https://doi.org/10.48550/arXiv.2407.05426
  • Abrams, A. B. (2022). China and America's tech war from AI to 5G: The struggle to shape the future of world order. Rowman & Littlefield.
  • Abuhassna, H., Awae, F., Adnan, M. A. B. M., Daud, M., & Almheiri, A. S. B. (2024). The information age for education via artificial intelligence and machine learning: A bibliometric and systematic literature analysis. International Journal of Information and Education Technology, 14(5), 700–711. https://doi.org/10.18178/ijiet.2024.14.5.2095
  • Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-learning-based disease diagnosis: A comprehensive review. Healthcare, 10(3), Article 3. https://doi.org/10.3390/healthcare10030541
  • Akinrinola, O., Okoye, C., & Ugochukwu, C. (2024). Navigating and reviewing ethical dilemmas in AI development: Strategies for transparency, fairness, and accountability. GSC Advanced Research and Reviews, 18, 050–058. https://doi.org/10.30574/gscarr.2024.18.3.0088
  • Akour, M., & Alenezi, M. (2022). Higher education future in the era of digital transformation. Education Sciences, 12(11), Article 11. https://doi.org/10.3390/educsci12110784
  • Alkoud, S., Majeed, I., Zainudin, D., & Mhd Sarif, S. (2024). Future research directions and global research trends of applying artificial intelligence in human resources using bibliometric analysis. International Journal of Academic Research in Accounting, Finance and Management Sciences, 14(4), 1354-1377. https://doi.org/10.6007/IJARAFMS/v14-i4/23963
  • Al-Zahrani, A. M., & Alasmari, T. M. (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities and Social Sciences Communications, 11(1), 1–12. https://doi.org/10.1057/s41599-024-03432-4
  • Armstrong, G. W., & Lorch, A. C. (2020). A(eye): A review of current applications of artificial intelligence and machine learning in ophthalmology. International Ophthalmology Clinics, 60(1), 57–71. https://doi.org/10.1097/IIO.0000000000000298
  • Ashrafian, H. (2015). Artificial intelligence and robot responsibilities: Innovating beyond rights. Science and Engineering Ethics, 21(2), 317–326. https://doi.org/10.1007/s11948-014-9541-0
  • Atkinson, R. D., & Atkinson, R. D. (2024). China is rapidly becoming a leading innovator in advanced industries. Information Technology and Innovation Foundation.
  • Babalola, S. S., & Nwanzu, C. L. (2021). The current phase of social sciences research: A thematic overview of the literature. Cogent Social Sciences, 7(1), 1892263. https://doi.org/10.1080/23311886.2021.1892263
  • Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in finance: A comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23. https://doi.org/10.1007/s43546-023-00618-x
  • Bai, A., Wu, C., & Yang, K. (2021). Evolution and features of China's central government funding system for basic research. Frontiers in Research Metrics and Analytics, 6, 751497. https://doi.org/10.3389/frma.2021.751497
  • Bhatt, P., Sethi, A., Tasgaonkar, V., Shroff, J., Pendharkar, I., Desai, A., Sinha, P., Deshpande, A., Joshi, G., Rahate, A., Jain, P., Walambe, R., Kotecha, K., & Jain, N. K. (2023). Machine learning for cognitive behavioral analysis: Datasets, methods, paradigms, and research directions. Brain Informatics, 10(1), 18. https://doi.org/10.1186/s40708-023-00196-6
  • Bianchini, S., Müller, M., & Pelletier, P. (2022). Artificial intelligence in science: An emerging general method of invention. Research Policy, 51(10), 104604. https://doi.org/10.1016/j.respol.2022.104604
  • Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In A. Bohr & K. Memarzadeh (Eds.), Artificial intelligence in healthcare (pp. 25–60). Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
  • Borsboom, D. (2023). Psychological constructs as organizing principles. In L. A. van der Ark, W. H. M. Emons, & R. R. Meijer (Eds.), Essays on contemporary psychometrics (pp. 89–108). Springer International Publishing. https://doi.org/10.1007/978-3-031-10370-4_5
  • Bouhouita-Guermech, S., Gogognon, P., & Bélisle-Pipon, J.-C. (2023). Specific challenges posed by artificial intelligence in research ethics. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1149082
  • Bounfour, A. (2016). Digital futures, digital transformation: From lean production to acceluction. Springer International Publishing. https://doi.org/10.1007/978-3-319-23279-9
  • Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., Adcock, R. A., Barch, D. M., Botvinick, M. M., Carver, C. S., Cools, R., Custers, R., Dickinson, A., Dweck, C. S., Fishbach, A., Gollwitzer, P. M., Hess, T. M., Isaacowitz, D. M., Mather, M., … for the MOMCAI group. (2014). Mechanisms of motivation–cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. https://doi.org/10.3758/s13415-014-0300-0
  • Bringezu, S., Potočnik, J., Schandl, H., Lu, Y., Ramaswami, A., Swilling, M., & Suh, S. (2016). Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability, 8(8), Article 8. https://doi.org/10.3390/su8080778
  • Bulfamante, D. (2023). Generative enterprise search with extensible knowledge base using AI [Yüksek lisans tezi, Politecnico di Torino]. https://webthesis.biblio.polito.it/28491/
  • Caruso, L. (2018). Digital innovation and the fourth industrial revolution: Epochal social changes? AI & Society, 33(3), 379–392. https://doi.org/10.1007/s00146-017-0736-1
  • Chen, X., Wu, C.-S., Murakhovs'ka, L., Laban, P., Niu, T., Liu, W., & Xiong, C. (2023). Marvista: Exploring the design of a human-AI collaborative news reading tool (arXiv:2207.08401). arXiv. https://doi.org/10.48550/arXiv.2207.08401
  • Coulson, R. N., Folse, L. J., & Loh, D. K. (1987). Artificial intelligence and natural resource management. Science, 237(4812), 262–267. https://doi.org/10.1126/science.237.4812.262
  • Dai, C.-P., Ke, F., Zhang, N., Barrett, A., West, L., Bhowmik, S., Southerland, S. A., & Yuan, X. (2024). Designing conversational agents to support student teacher learning in virtual reality simulation: A case study. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 1–8. https://doi.org/10.1145/3613905.3637145
  • Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. MIT Press.
  • Díaz-Rodríguez, N., Ser, J. D., Coeckelbergh, M., López de Prado, M., Herrera-Viedma, E., & Herrera, F. (2023). Connecting the dots in trustworthy artificial intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896. https://doi.org/10.1016/j.inffus.2023.101896
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • English, N., Zhao, C., Brown, K. L., Catlett, C., & Cagney, K. (2022). Making sense of sensor data: How local environmental conditions add value to social science research. Social Science Computer Review, 40(1), 179–194. https://doi.org/10.1177/0894439320920601
  • Farina, M., Zhdanov, P., Karimov, A., & Lavazza, A. (2024). AI and society: A virtue ethics approach. AI & Society, 39(3), 1127–1140. https://doi.org/10.1007/s00146-022-01545-5
  • Feng, T., Xiong, R., & Huan, P. (2023). Productive use of natural resources in agriculture: The main policy lessons. Resources Policy, 85, 103793. https://doi.org/10.1016/j.resourpol.2023.103793
  • Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). Beyond binary choices: Integrating individual and social creativity. International Journal of Human-Computer Studies, 63(4), 482–512. https://doi.org/10.1016/j.ijhcs.2005.04.014
  • Forrester, C. (2025). Rethinking cheating in the age of AI. In Teaching and learning in the age of generative AI: Evidence-based approaches to pedagogy, ethics, and beyond. Routledge.
  • Franco, G. D., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & Quantity, 55(3), 1007–1025. https://doi.org/10.1007/s11135-020-01037-y
  • Gao, F. (2018). 全球知名智库对中国《新一代人工智能发展规划》发布与实施情况的评价及启示. 情报工程, 4(2), 026–035.
  • Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.
  • Gignac, G. E., & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. Intelligence, 104, 101832. https://doi.org/10.1016/j.intell.2024.101832
  • González, A. L., Moreno, M., Román, A. C. M., Fernández, Y. H., & Pérez, N. C. (2024). Ethics in artificial intelligence: An approach to cybersecurity. Inteligencia Artificial, 27(73), Article 73. https://doi.org/10.4114/intartif.vol27iss73pp38-54
  • Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19(2), 59–92. https://doi.org/10.1177/1529100618808244
  • Grossmann, I. (2023). AI surrogates and the transformation of social science research. OSF Preprints. https://osf.io/h4e2a/
  • Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A., Tetlock, P. E., & Cunningham, W. A. (2023). AI and the transformation of social science research. Science, 380(6650), 1108–1109. https://doi.org/10.1126/science.adi1778
  • Guleria, A., Krishan, K., Sharma, V., & Kanchan, T. (2023). ChatGPT: Ethical concerns and challenges in academics and research. The Journal of Infection in Developing Countries, 17(09), Article 09. https://doi.org/10.3855/jidc.18738
  • Haleem, A., Javaid, M., Pratap Singh, R., & Suman, R. (2022). Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet of Things and Cyber-Physical Systems, 2, 12–30. https://doi.org/10.1016/j.iotcps.2022.04.001
  • Haque, Md. A., & Li, S. (2024). Exploring ChatGPT and its impact on society. AI and Ethics. https://doi.org/10.1007/s43681-024-00435-4
  • Harlow, H. (2018). Ethical concerns of artificial intelligence, big data and data analytics. European Conference on Knowledge Management, 316–323.
  • Hasas, A., Hakimi, M., Shahidzay, A. K., & Fazil, A. W. (2024). AI for social good: Leveraging artificial intelligence for community development. Journal of Community Service and Society Empowerment, 2(02), 196–210. https://doi.org/10.59653/jcsse.v2i02.592
  • He, W.-B., Ma, Y.-G., Pang, L.-G., Song, H.-C., & Zhou, K. (2023). High-energy nuclear physics meets machine learning. Nuclear Science and Techniques, 34(6), 88. https://doi.org/10.1007/s41365-023-01233-z
  • Hisham, A. B., Yusof, N. A. M., Salleh, S. H., & Abas, H. (2024). Transforming governance: A systematic review of AI applications in policymaking. Journal of Science, Technology and Innovation Policy, 10(1), 7–15. https://doi.org/10.11113/jostip.v10n1.148
  • Hodges, A., & Hofstadter, D. (2014). Alan Turing: The enigma: The book that inspired the film the imitation game (Updated ed.). Princeton University Press.
  • Hulland, J. (2024). Bibliometric reviews—some guidelines. Journal of the Academy of Marketing Science, 52(4), 935–938. https://doi.org/10.1007/s11747-024-01016-x
  • Ibrahim, L., Huang, S., Ahmad, L., & Anderljung, M. (2024). Beyond static AI evaluations: Advancing human interaction evaluations for LLM harms and risks (arXiv:2405.10632). arXiv. https://doi.org/10.48550/arXiv.2405.10632
  • Izard, C. E. (2013). Human emotions. Springer Science & Business Media.
  • Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-022-00022-8
  • Jiao, L., Song, X., You, C., Liu, X., Li, L., Chen, P., Tang, X., Feng, Z., Liu, F., Guo, Y., Yang, S., Li, Y., Zhang, X., Ma, W., Wang, S., Bai, J., & Hou, B. (2024). AI meets physics: A comprehensive survey. Artificial Intelligence Review, 57(9), 256. https://doi.org/10.1007/s10462-024-10874-4
  • Jinnuo, Z., Goyal, S. B., Rajawat, A. S., Nassar Waked, H., Ahmad, S., Randhawa, P., Suresh, S., & Naik, N. (2025). Analysis of existing techniques in human emotion and behavioral analysis using deep learning and machine learning models. Engineering Research Express, 7(1), 012201. https://doi.org/10.1088/2631-8695/ada68b
  • Kang, Y., Gao, S., & Roth, R. E. (2024). Artificial intelligence studies in cartography: A review and synthesis of methods, applications, and ethics. Cartography and Geographic Information Science, 51(4), 599–630. https://doi.org/10.1080/15230406.2023.2295943
  • Khan, A. (2024). The intersection of artificial intelligence and international trade laws: Challenges and opportunities. IIUM Law Journal, 32, 103.
  • Khanal, S., Hongzhou, Z., & Taeihagh, A. (2025). Development of new generation of artificial intelligence in China: When Beijing's global ambitions meet local realities. Journal of Contemporary China, 34(151), 19–42. https://doi.org/10.1080/10670564.2024.2333492
  • Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M. D., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), Article 18. https://doi.org/10.3390/su131810424
  • Lawal, Y. A., Ayanleke, A. O., & Oshin, I. I. (2024). The impact of AI techniques on human-AI interaction quality in project management: A mixed-methods study. Organization and Human Capital Development, 3(2), 1–17. https://doi.org/10.31098/orcadev.v3i2.2307
  • Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. International Journal of Environmental Research and Public Health, 18(1), Article 1. https://doi.org/10.3390/ijerph18010271
  • Lescrauwaet, L., Wagner, H., Yoon, C., & Shukla, S. (2022). Adaptive legal frameworks and economic dynamics in emerging technologies: Navigating the intersection for responsible innovation. Law and Economics, 16(3), Article 3. https://doi.org/10.35335/laweco.v16i3.61
  • Li, R. (2020). Artificial intelligence revolution: How AI will change our society, economy, and culture. Simon and Schuster.
  • Liu, Y., & Quan, Q. (2022). AI recognition method of pronunciation errors in oral English speech with the help of big data for personalized learning. Journal of Information & Knowledge Management, 21(Supp02), 2240028. https://doi.org/10.1142/S0219649222400287
  • Luong, N., & Fedasiuk, R. (2022). State plans, research, and funding. In Chinese power and artificial intelligence. Routledge.
  • Ma, D., Akram, H., & Chen, I.-H. (2024). Artificial intelligence in higher education: A cross-cultural examination of students' behavioral intentions and attitudes. The International Review of Research in Open and Distributed Learning, 25(3), 134–157. https://doi.org/10.19173/irrodl.v25i3.7703
  • Madumal, P., Miller, T., Sonenberg, L., & Vetere, F. (2019). A grounded interaction protocol for explainable artificial intelligence (arXiv:1903.02409). arXiv. https://doi.org/10.48550/arXiv.1903.02409
  • Maghsoudi, M., Shahri, M. K., Kermani, M. A. M. A., & Khanizad, R. (2025). Mapping the landscape of AI-driven human resource management: A social network analysis of research collaboration. IEEE Access, 13, 3090–3114. https://doi.org/10.1109/ACCESS.2024.3523437
  • Mandavilli, S. R. (2024). Propounding "structured innovative thinking techniques for social sciences research": Why this can be a game changer in social sciences research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4889628
  • Marwala, T., & Mpedi, L. G. (2024). Artificial intelligence and the law. In T. Marwala & L. G. Mpedi (Eds.), Artificial intelligence and the law (pp. 1–25). Springer Nature. https://doi.org/10.1007/978-981-97-2827-5_1
  • McPhee, S. J., & Papadakis, M. (2009). Current medical diagnosis and treatment 2010 (49th ed.). McGraw-Hill Medical.
  • Meskó, B., Drobni, Z., Bényei, É., Gergely, B., & Győrffy, Z. (2017). Digital health is a cultural transformation of traditional healthcare. mHealth, 3(9), Article 9. https://doi.org/10.21037/mhealth.2017.08.07
  • Messeri, L., & Crockett, M. J. (2024). Artificial intelligence and illusions of understanding in scientific research. Nature, 627(8002), 49–58. https://doi.org/10.1038/s41586-024-07146-0
  • Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007
  • Modiba, M. (2024). Application of conversational generative pre-trained transformer for improvement of information services in academic libraries. South African Journal of Libraries and Information Science, 90(1), Article 1. https://doi.org/10.7553/90-1-2384
  • Mondal, S., Das, S., Golder, S. S., Bose, R., Sutradhar, S., & Mondal, H. (2024). AI-driven big data analytics for personalized medicine in healthcare: Integrating federated learning, blockchain, and quantum computing. In 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICAIQSA64000.2024.10882330
  • Mondal, S., & Palit, D. (2022). Challenges in natural resource management for ecological sustainability. In M. K. Jhariya, R. S. Meena, A. Banerjee, & S. N. Meena (Eds.), Natural resources conservation and advances for sustainability (pp. 29–59). Elsevier. https://doi.org/10.1016/B978-0-12-822976-7.00004-1
  • Morande, S., Tewari, V., & Kukreja, J. (2025). Decoding the consumer mimic: Influencers, algorithms and the future of marketing. In A. Kumar, M. D. Ciddikie, A. K. Kashyap, & H. W. Akram (Eds.), Marketing 5.0 (pp. 43–56). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83797-815-120251004
  • Mottaghi-Dastjerdi, N., & Soltany-Rezaee-Rad, M. (2024). Advancements and applications of artificial intelligence in pharmaceutical sciences: A comprehensive review. Iranian Journal of Pharmaceutical Research, 23(1), e150510. https://doi.org/10.5812/ijpr-150510
  • Muwani, T. S., Ranganai, N., Zivanai, L., & Munyoro, B. (2022). The global digital divide and digital transformation: The benefits and drawbacks of living in a digital society. In Digital transformation for promoting inclusiveness in marginalized communities (pp. 217–236). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-3901-2.ch011
  • Naamati-Schneider, L. (2024). Enhancing AI competence in health management: Students' experiences with ChatGPT as a learning tool. BMC Medical Education, 24(1), 598. https://doi.org/10.1186/s12909-024-05595-9
  • Nadjia, M. (2024). The impact of artificial intelligence on legal systems: Challenges and opportunities. Проблеми Законності, 164, 285–303.
  • Nikolinakos, N. Th. (2023). Ethical principles for trustworthy AI. In N. Th. Nikolinakos (Ed.), EU policy and legal framework for artificial intelligence, robotics and related technologies—The AI Act (pp. 101–166). Springer International Publishing. https://doi.org/10.1007/978-3-031-27953-9_3
  • Ogilvie, A. D. (2024). Antisocial analagous behavior, alignment and human impact of Google AI systems: Evaluating through the lens of modified antisocial behavior criteria by human interaction, independent LLM analysis, and AI self-reflection. Computer & Society. https://doi.org/10.48550/arXiv.2403.15479
  • Okon-Singer, H., Hendler, T., Pessoa, L., & Shackman, A. J. (2015). The neurobiology of emotion–cognition interactions: Fundamental questions and strategies for future research. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00058
  • Ortony, A. (2022). Are all "basic emotions" emotions? A problem for the (basic) emotions construct. Perspectives on Psychological Science, 17(1), 41–61. https://doi.org/10.1177/1745691620985415
  • Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: An overview and a framework proposal. Review of Managerial Science. https://doi.org/10.1007/s11846-024-00738-0
  • Pal, S. (2023). A paradigm shift in research: Exploring the intersection of artificial intelligence and research methodology. International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 11(3), 1–7.
  • Pandey, D. K., Hunjra, A. I., Bhaskar, R., & Al-Faryan, M. A. S. (2023). Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022. Resources Policy, 86, 104250. https://doi.org/10.1016/j.resourpol.2023.104250
  • Pang, L.-G. (2024). Studying high-energy nuclear physics with machine learning. International Journal of Modern Physics E, 33(06), 2430009. https://doi.org/10.1142/S0218301324300091
  • Pattanayak, S. K. (2022). Generative AI for market analysis in business consulting: Revolutionizing data insights and competitive intelligence. International Journal of Enhanced Research in Management & Computer Applications, 11, 74–86.
  • Payadnya, I. P. A. A., Putri, G. A. M. A., Suwija, I. K., Saelee, S., & Jayantika, I. G. A. N. T. (2025). Cultural integration in AI-enhanced mathematics education: Insights from Southeast Asian educators. Journal for Multicultural Education, 19(1), 58–72. https://doi.org/10.1108/JME-09-2024-0119
  • Phillips, O. R., Harries, C., Leonardi-Bee, J., Knight, H., Sherar, L. B., Varela-Mato, V., & Morling, J. R. (2024). What are the strengths and limitations to utilising creative methods in public and patient involvement in health and social care research? A qualitative systematic review. Research Involvement and Engagement, 10, 48. https://doi.org/10.1186/s40900-024-00580-4
  • Prasad, A., Nagda, G., Syed, N., & Kumar, A. (2023). A detailed survey on awareness, knowledge and practice of pesticides used against various vegetables, fruits and cereal crops grown in and around Udaipur region of south Rajasthan, India. Bulletin of Pure & Applied Sciences- Zoology, 42(1), Article 1. https://doi.org/10.48165/bpas.2023.42A.1.6
  • Qayyum, J., Siddiqui, H. A., Al Prince, A., Ahmad, S., & Raza, M. (2025). Revolutionizing market insights through AI and data analytics: The next era of competitive intelligence. The Critical Review of Social Sciences Studies, 3(1), 3285–3302.
  • Radanliev, P. (2025). AI ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1), 2463722. https://doi.org/10.1080/08839514.2025.2463722
  • Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. Cogent Education, 11(1), 2293431. https://doi.org/10.1080/2331186X.2023.2293431
  • Raman, P. (2023). The transformative role of AI in social science research. Uniathena. https://uniathena.com/role-of-AI-in-social-science-research
  • Saheb, T., & Saheb, T. (2024). Mapping ethical artificial intelligence policy landscape: A mixed method analysis. Science and Engineering Ethics, 30(2), 9. https://doi.org/10.1007/s11948-024-00472-6
  • Santos, M. F. de L., & Jamil, S. (2024). Bridging the AI divide: Human and responsible AI in news and media industries. Emerging Media, 2(3), 335–346. https://doi.org/10.1177/27523543241291229
  • Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-01043-x
  • Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 353.
  • Schoser, B. (2023). Editorial: Framing artificial intelligence to neuromuscular disorders. Current Opinion in Neurology, 36(5), 424. https://doi.org/10.1097/WCO.0000000000001190
  • Sebastian, R., Kottekkadan, N. N., Thomas, T. K., & Niyas Kk, M. (2025). Generative AI tools (ChatGPT*) in social science research. Journal of Information, Communication and Ethics in Society, 23(2), 284–290. https://doi.org/10.1108/JICES-10-2024-0145
  • Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 125. https://doi.org/10.1186/s12911-021-01488-9
  • Senyapar, H. N. D. (2024). Artificial intelligence in marketing communication: A comprehensive exploration of the integration and impact of AI. Technium Social Sciences Journal, 55, 64–81. https://doi.org/10.47577/tssj.v55i1.10651
  • Shah, S. A. R., Zhang, Q., Abbas, J., Tang, H., & Al-Sulaiti, K. I. (2023). Waste management, quality of life and natural resources utilization matter for renewable electricity generation: The main and moderate role of environmental policy. Utilities Policy, 82, 101584. https://doi.org/10.1016/j.jup.2023.101584
  • Shao, Z., Yuan, S., Wang, Y., & Xu, J. (2021). Evolutions and trends of artificial intelligence (AI): Research, output, influence and competition. Library Hi Tech, 40(3), 704–724. https://doi.org/10.1108/LHT-01-2021-0018
  • Shin, D., Grover, S., Holstein, K., & Perer, A. (2021). Characterizing human explanation strategies to inform the design of explainable AI for building damage assessment (arXiv:2111.02626). arXiv. https://doi.org/10.48550/arXiv.2111.02626
  • Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2022). Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence (arXiv:2211.06318). arXiv. https://doi.org/10.48550/arXiv.2211.06318
  • Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances in theory and methodology. Annual Review of Clinical Psychology, 5, 1–25. https://doi.org/10.1146/annurev.clinpsy.032408.153639
  • Sun, T., Zhao, K., & Chen, M. (2024). Human-AI interaction: Human behavior routineness shapes AI performance. IEEE Transactions on Knowledge and Data Engineering, 36(12), 8476–8487. https://doi.org/10.1109/TKDE.2024.3480317
  • Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: Opportunities and risk for future. Gaceta Sanitaria, 35, S67–S70. https://doi.org/10.1016/j.gaceta.2020.12.019
  • Tao, Q., Chao, H., Fang, D., & Dou, D. (2024). Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regeneration Research, 19(1), 226. https://doi.org/10.4103/1673-5374.375342
  • Tapia, E. B. (2024). Artificial intelligence based on resilient leadership in the health sector. Revista Cientifica Global Negotium, 7(1), Article 1. https://doi.org/10.0833/rgn.v7i1.421
  • Thacharodi, A., Singh, P., Meenatchi, R., Tawfeeq Ahmed, Z. H., Kumar, R. R. S., V, N., Kavish, S., Maqbool, M., & Hassan, S. (2024). Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future—A comprehensive review. Health Care Science, 3(5), 329–349. https://doi.org/10.1002/hcs2.115
  • Tripathi, M. K., Nath, A., Singh, T. P., Ethayathulla, A. S., & Kaur, P. (2021). Evolving scenario of big data and artificial intelligence (AI) in drug discovery. Molecular Diversity, 25(3), 1439–1460. https://doi.org/10.1007/s11030-021-10256-w
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433
  • Wallin, J. A. (2005). Bibliometric methods: Pitfalls and possibilities. Basic & Clinical Pharmacology & Toxicology, 97(5), 261–275. https://doi.org/10.1111/j.1742-7843.2005.pto_139.x
  • Wan, Q., Miao, X., & Afshan, S. (2022). Dynamic effects of natural resource abundance, green financing, and government environmental concerns toward the sustainable environment in China. Resources Policy, 79, 102954. https://doi.org/10.1016/j.resourpol.2022.102954
  • Wang, C., Chen, X., Yu, T., Liu, Y., & Jing, Y. (2024). Education reform and change driven by digital technology: A bibliometric study from a global perspective. Humanities and Social Sciences Communications, 11(1), 1–17. https://doi.org/10.1057/s41599-024-02717-y
  • Wang, F., Guo, W., Xue, R., Baron, C., & Jia, C. (2025). Exploring the subject heterogeneity of scientific research projects funding-example of the Chinese natural science foundation. Information Processing & Management, 62(4), 104098. https://doi.org/10.1016/j.ipm.2025.104098
  • Wang, H. (2020). Corporate social responsibility in China. In S. Seifi (Ed.), The Palgrave handbook of corporate social responsibility (pp. 1–24). Springer International Publishing. https://doi.org/10.1007/978-3-030-22438-7_71-1
  • Wiederhold, B. K. (2025). The rise of synthetic societies: Is there a role for humans? Cyberpsychology, Behavior, and Social Networking. https://doi.org/10.1089/cyber.2025.0067
  • Wu, L., Kim, M., & Markauskaite, L. (2020). Developing young children's empathic perception through digitally mediated interpersonal experience: Principles for a hybrid design of empathy games. British Journal of Educational Technology, 51(4), 1168–1187. https://doi.org/10.1111/bjet.12918
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4). https://doi.org/10.1016/j.xinn.2021.100179
  • Yusuf, A., Pervin, N., & Román-González, M. (2024). Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1), 21. https://doi.org/10.1186/s41239-024-00453-6
  • Zhu, J.-J., Yang, M., & Ren, Z. J. (2023). Machine learning in environmental research: Common pitfalls and best practices. Environmental Science & Technology, 57(46), 17671–17689. https://doi.org/10.1021/acs.est.3c00026
  • 高芳. (2018). 全球知名智库对中国《新一代人工智能发展规划》发布与实施情况的评价及启示. 情报工程, 4(2), 026–035.

Trends in Using Artificial Intelligence in Social and Natural Science Research

Year 2025, Volume: 4 Issue: 1, 100 - 132, 31.05.2025
https://doi.org/10.58239/tamde.2025.01.006.x

Abstract

This article discusses trends in the use of artificial intelligence (AI) in social sciences and natural sciences research. The introduction highlights how AI has evolved into an essential tool in both fields, addressing the limitations of traditional methods in social sciences and accelerating data analysis in natural sciences. The research method used is bibliometric analysis, with data collected from Google Scholar using keywords related to AI in social and natural sciences. Relevant articles were selected through a content evaluation and exclusion process, resulting in 1,000 social science publications and 999 natural science publications, which were further analyzed using VOSviewer with such as being outside the five-year range (published from 2020 to 2025). The study's findings indicate that in social sciences, AI is widely used to enhance research effectiveness through faster data processing, particularly in higher education and social policy analysis. Additionally, AI studies in social sciences are expanding, focusing on ethics, regulation, and human-AI interaction. In natural sciences, AI plays a crucial role in resource management, environmental research, and the healthcare industry, including disease diagnosis and drug development. Recent trends also show an increasing use of large language models (LLMs) and natural language processing (NLP) in scientific research. The study concludes that AI has become a key element in both social and natural science research. Recommendations for social science researchers include further exploration of AI’s impact on psychology, law, and education, as well as the use of bibliometric methods. Meanwhile, natural science researchers are advised to focus on improving AI transparency, developing more accurate technologies, and applying AI in environmental and industrial research. Interdisciplinary collaboration is necessary to ensure AI development remains ethical and inclusive.

References

  • Abdelaal, M. (2024). AI in manufacturing: Market analysis and opportunities (arXiv:2407.05426). arXiv. https://doi.org/10.48550/arXiv.2407.05426
  • Abrams, A. B. (2022). China and America's tech war from AI to 5G: The struggle to shape the future of world order. Rowman & Littlefield.
  • Abuhassna, H., Awae, F., Adnan, M. A. B. M., Daud, M., & Almheiri, A. S. B. (2024). The information age for education via artificial intelligence and machine learning: A bibliometric and systematic literature analysis. International Journal of Information and Education Technology, 14(5), 700–711. https://doi.org/10.18178/ijiet.2024.14.5.2095
  • Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-learning-based disease diagnosis: A comprehensive review. Healthcare, 10(3), Article 3. https://doi.org/10.3390/healthcare10030541
  • Akinrinola, O., Okoye, C., & Ugochukwu, C. (2024). Navigating and reviewing ethical dilemmas in AI development: Strategies for transparency, fairness, and accountability. GSC Advanced Research and Reviews, 18, 050–058. https://doi.org/10.30574/gscarr.2024.18.3.0088
  • Akour, M., & Alenezi, M. (2022). Higher education future in the era of digital transformation. Education Sciences, 12(11), Article 11. https://doi.org/10.3390/educsci12110784
  • Alkoud, S., Majeed, I., Zainudin, D., & Mhd Sarif, S. (2024). Future research directions and global research trends of applying artificial intelligence in human resources using bibliometric analysis. International Journal of Academic Research in Accounting, Finance and Management Sciences, 14(4), 1354-1377. https://doi.org/10.6007/IJARAFMS/v14-i4/23963
  • Al-Zahrani, A. M., & Alasmari, T. M. (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities and Social Sciences Communications, 11(1), 1–12. https://doi.org/10.1057/s41599-024-03432-4
  • Armstrong, G. W., & Lorch, A. C. (2020). A(eye): A review of current applications of artificial intelligence and machine learning in ophthalmology. International Ophthalmology Clinics, 60(1), 57–71. https://doi.org/10.1097/IIO.0000000000000298
  • Ashrafian, H. (2015). Artificial intelligence and robot responsibilities: Innovating beyond rights. Science and Engineering Ethics, 21(2), 317–326. https://doi.org/10.1007/s11948-014-9541-0
  • Atkinson, R. D., & Atkinson, R. D. (2024). China is rapidly becoming a leading innovator in advanced industries. Information Technology and Innovation Foundation.
  • Babalola, S. S., & Nwanzu, C. L. (2021). The current phase of social sciences research: A thematic overview of the literature. Cogent Social Sciences, 7(1), 1892263. https://doi.org/10.1080/23311886.2021.1892263
  • Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in finance: A comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23. https://doi.org/10.1007/s43546-023-00618-x
  • Bai, A., Wu, C., & Yang, K. (2021). Evolution and features of China's central government funding system for basic research. Frontiers in Research Metrics and Analytics, 6, 751497. https://doi.org/10.3389/frma.2021.751497
  • Bhatt, P., Sethi, A., Tasgaonkar, V., Shroff, J., Pendharkar, I., Desai, A., Sinha, P., Deshpande, A., Joshi, G., Rahate, A., Jain, P., Walambe, R., Kotecha, K., & Jain, N. K. (2023). Machine learning for cognitive behavioral analysis: Datasets, methods, paradigms, and research directions. Brain Informatics, 10(1), 18. https://doi.org/10.1186/s40708-023-00196-6
  • Bianchini, S., Müller, M., & Pelletier, P. (2022). Artificial intelligence in science: An emerging general method of invention. Research Policy, 51(10), 104604. https://doi.org/10.1016/j.respol.2022.104604
  • Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In A. Bohr & K. Memarzadeh (Eds.), Artificial intelligence in healthcare (pp. 25–60). Academic Press. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
  • Borsboom, D. (2023). Psychological constructs as organizing principles. In L. A. van der Ark, W. H. M. Emons, & R. R. Meijer (Eds.), Essays on contemporary psychometrics (pp. 89–108). Springer International Publishing. https://doi.org/10.1007/978-3-031-10370-4_5
  • Bouhouita-Guermech, S., Gogognon, P., & Bélisle-Pipon, J.-C. (2023). Specific challenges posed by artificial intelligence in research ethics. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1149082
  • Bounfour, A. (2016). Digital futures, digital transformation: From lean production to acceluction. Springer International Publishing. https://doi.org/10.1007/978-3-319-23279-9
  • Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., Adcock, R. A., Barch, D. M., Botvinick, M. M., Carver, C. S., Cools, R., Custers, R., Dickinson, A., Dweck, C. S., Fishbach, A., Gollwitzer, P. M., Hess, T. M., Isaacowitz, D. M., Mather, M., … for the MOMCAI group. (2014). Mechanisms of motivation–cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. https://doi.org/10.3758/s13415-014-0300-0
  • Bringezu, S., Potočnik, J., Schandl, H., Lu, Y., Ramaswami, A., Swilling, M., & Suh, S. (2016). Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability, 8(8), Article 8. https://doi.org/10.3390/su8080778
  • Bulfamante, D. (2023). Generative enterprise search with extensible knowledge base using AI [Yüksek lisans tezi, Politecnico di Torino]. https://webthesis.biblio.polito.it/28491/
  • Caruso, L. (2018). Digital innovation and the fourth industrial revolution: Epochal social changes? AI & Society, 33(3), 379–392. https://doi.org/10.1007/s00146-017-0736-1
  • Chen, X., Wu, C.-S., Murakhovs'ka, L., Laban, P., Niu, T., Liu, W., & Xiong, C. (2023). Marvista: Exploring the design of a human-AI collaborative news reading tool (arXiv:2207.08401). arXiv. https://doi.org/10.48550/arXiv.2207.08401
  • Coulson, R. N., Folse, L. J., & Loh, D. K. (1987). Artificial intelligence and natural resource management. Science, 237(4812), 262–267. https://doi.org/10.1126/science.237.4812.262
  • Dai, C.-P., Ke, F., Zhang, N., Barrett, A., West, L., Bhowmik, S., Southerland, S. A., & Yuan, X. (2024). Designing conversational agents to support student teacher learning in virtual reality simulation: A case study. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 1–8. https://doi.org/10.1145/3613905.3637145
  • Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. MIT Press.
  • Díaz-Rodríguez, N., Ser, J. D., Coeckelbergh, M., López de Prado, M., Herrera-Viedma, E., & Herrera, F. (2023). Connecting the dots in trustworthy artificial intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896. https://doi.org/10.1016/j.inffus.2023.101896
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • English, N., Zhao, C., Brown, K. L., Catlett, C., & Cagney, K. (2022). Making sense of sensor data: How local environmental conditions add value to social science research. Social Science Computer Review, 40(1), 179–194. https://doi.org/10.1177/0894439320920601
  • Farina, M., Zhdanov, P., Karimov, A., & Lavazza, A. (2024). AI and society: A virtue ethics approach. AI & Society, 39(3), 1127–1140. https://doi.org/10.1007/s00146-022-01545-5
  • Feng, T., Xiong, R., & Huan, P. (2023). Productive use of natural resources in agriculture: The main policy lessons. Resources Policy, 85, 103793. https://doi.org/10.1016/j.resourpol.2023.103793
  • Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). Beyond binary choices: Integrating individual and social creativity. International Journal of Human-Computer Studies, 63(4), 482–512. https://doi.org/10.1016/j.ijhcs.2005.04.014
  • Forrester, C. (2025). Rethinking cheating in the age of AI. In Teaching and learning in the age of generative AI: Evidence-based approaches to pedagogy, ethics, and beyond. Routledge.
  • Franco, G. D., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & Quantity, 55(3), 1007–1025. https://doi.org/10.1007/s11135-020-01037-y
  • Gao, F. (2018). 全球知名智库对中国《新一代人工智能发展规划》发布与实施情况的评价及启示. 情报工程, 4(2), 026–035.
  • Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.
  • Gignac, G. E., & Szodorai, E. T. (2024). Defining intelligence: Bridging the gap between human and artificial perspectives. Intelligence, 104, 101832. https://doi.org/10.1016/j.intell.2024.101832
  • González, A. L., Moreno, M., Román, A. C. M., Fernández, Y. H., & Pérez, N. C. (2024). Ethics in artificial intelligence: An approach to cybersecurity. Inteligencia Artificial, 27(73), Article 73. https://doi.org/10.4114/intartif.vol27iss73pp38-54
  • Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19(2), 59–92. https://doi.org/10.1177/1529100618808244
  • Grossmann, I. (2023). AI surrogates and the transformation of social science research. OSF Preprints. https://osf.io/h4e2a/
  • Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A., Tetlock, P. E., & Cunningham, W. A. (2023). AI and the transformation of social science research. Science, 380(6650), 1108–1109. https://doi.org/10.1126/science.adi1778
  • Guleria, A., Krishan, K., Sharma, V., & Kanchan, T. (2023). ChatGPT: Ethical concerns and challenges in academics and research. The Journal of Infection in Developing Countries, 17(09), Article 09. https://doi.org/10.3855/jidc.18738
  • Haleem, A., Javaid, M., Pratap Singh, R., & Suman, R. (2022). Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet of Things and Cyber-Physical Systems, 2, 12–30. https://doi.org/10.1016/j.iotcps.2022.04.001
  • Haque, Md. A., & Li, S. (2024). Exploring ChatGPT and its impact on society. AI and Ethics. https://doi.org/10.1007/s43681-024-00435-4
  • Harlow, H. (2018). Ethical concerns of artificial intelligence, big data and data analytics. European Conference on Knowledge Management, 316–323.
  • Hasas, A., Hakimi, M., Shahidzay, A. K., & Fazil, A. W. (2024). AI for social good: Leveraging artificial intelligence for community development. Journal of Community Service and Society Empowerment, 2(02), 196–210. https://doi.org/10.59653/jcsse.v2i02.592
  • He, W.-B., Ma, Y.-G., Pang, L.-G., Song, H.-C., & Zhou, K. (2023). High-energy nuclear physics meets machine learning. Nuclear Science and Techniques, 34(6), 88. https://doi.org/10.1007/s41365-023-01233-z
  • Hisham, A. B., Yusof, N. A. M., Salleh, S. H., & Abas, H. (2024). Transforming governance: A systematic review of AI applications in policymaking. Journal of Science, Technology and Innovation Policy, 10(1), 7–15. https://doi.org/10.11113/jostip.v10n1.148
  • Hodges, A., & Hofstadter, D. (2014). Alan Turing: The enigma: The book that inspired the film the imitation game (Updated ed.). Princeton University Press.
  • Hulland, J. (2024). Bibliometric reviews—some guidelines. Journal of the Academy of Marketing Science, 52(4), 935–938. https://doi.org/10.1007/s11747-024-01016-x
  • Ibrahim, L., Huang, S., Ahmad, L., & Anderljung, M. (2024). Beyond static AI evaluations: Advancing human interaction evaluations for LLM harms and risks (arXiv:2405.10632). arXiv. https://doi.org/10.48550/arXiv.2405.10632
  • Izard, C. E. (2013). Human emotions. Springer Science & Business Media.
  • Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-022-00022-8
  • Jiao, L., Song, X., You, C., Liu, X., Li, L., Chen, P., Tang, X., Feng, Z., Liu, F., Guo, Y., Yang, S., Li, Y., Zhang, X., Ma, W., Wang, S., Bai, J., & Hou, B. (2024). AI meets physics: A comprehensive survey. Artificial Intelligence Review, 57(9), 256. https://doi.org/10.1007/s10462-024-10874-4
  • Jinnuo, Z., Goyal, S. B., Rajawat, A. S., Nassar Waked, H., Ahmad, S., Randhawa, P., Suresh, S., & Naik, N. (2025). Analysis of existing techniques in human emotion and behavioral analysis using deep learning and machine learning models. Engineering Research Express, 7(1), 012201. https://doi.org/10.1088/2631-8695/ada68b
  • Kang, Y., Gao, S., & Roth, R. E. (2024). Artificial intelligence studies in cartography: A review and synthesis of methods, applications, and ethics. Cartography and Geographic Information Science, 51(4), 599–630. https://doi.org/10.1080/15230406.2023.2295943
  • Khan, A. (2024). The intersection of artificial intelligence and international trade laws: Challenges and opportunities. IIUM Law Journal, 32, 103.
  • Khanal, S., Hongzhou, Z., & Taeihagh, A. (2025). Development of new generation of artificial intelligence in China: When Beijing's global ambitions meet local realities. Journal of Contemporary China, 34(151), 19–42. https://doi.org/10.1080/10670564.2024.2333492
  • Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M. D., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), Article 18. https://doi.org/10.3390/su131810424
  • Lawal, Y. A., Ayanleke, A. O., & Oshin, I. I. (2024). The impact of AI techniques on human-AI interaction quality in project management: A mixed-methods study. Organization and Human Capital Development, 3(2), 1–17. https://doi.org/10.31098/orcadev.v3i2.2307
  • Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. International Journal of Environmental Research and Public Health, 18(1), Article 1. https://doi.org/10.3390/ijerph18010271
  • Lescrauwaet, L., Wagner, H., Yoon, C., & Shukla, S. (2022). Adaptive legal frameworks and economic dynamics in emerging technologies: Navigating the intersection for responsible innovation. Law and Economics, 16(3), Article 3. https://doi.org/10.35335/laweco.v16i3.61
  • Li, R. (2020). Artificial intelligence revolution: How AI will change our society, economy, and culture. Simon and Schuster.
  • Liu, Y., & Quan, Q. (2022). AI recognition method of pronunciation errors in oral English speech with the help of big data for personalized learning. Journal of Information & Knowledge Management, 21(Supp02), 2240028. https://doi.org/10.1142/S0219649222400287
  • Luong, N., & Fedasiuk, R. (2022). State plans, research, and funding. In Chinese power and artificial intelligence. Routledge.
  • Ma, D., Akram, H., & Chen, I.-H. (2024). Artificial intelligence in higher education: A cross-cultural examination of students' behavioral intentions and attitudes. The International Review of Research in Open and Distributed Learning, 25(3), 134–157. https://doi.org/10.19173/irrodl.v25i3.7703
  • Madumal, P., Miller, T., Sonenberg, L., & Vetere, F. (2019). A grounded interaction protocol for explainable artificial intelligence (arXiv:1903.02409). arXiv. https://doi.org/10.48550/arXiv.1903.02409
  • Maghsoudi, M., Shahri, M. K., Kermani, M. A. M. A., & Khanizad, R. (2025). Mapping the landscape of AI-driven human resource management: A social network analysis of research collaboration. IEEE Access, 13, 3090–3114. https://doi.org/10.1109/ACCESS.2024.3523437
  • Mandavilli, S. R. (2024). Propounding "structured innovative thinking techniques for social sciences research": Why this can be a game changer in social sciences research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4889628
  • Marwala, T., & Mpedi, L. G. (2024). Artificial intelligence and the law. In T. Marwala & L. G. Mpedi (Eds.), Artificial intelligence and the law (pp. 1–25). Springer Nature. https://doi.org/10.1007/978-981-97-2827-5_1
  • McPhee, S. J., & Papadakis, M. (2009). Current medical diagnosis and treatment 2010 (49th ed.). McGraw-Hill Medical.
  • Meskó, B., Drobni, Z., Bényei, É., Gergely, B., & Győrffy, Z. (2017). Digital health is a cultural transformation of traditional healthcare. mHealth, 3(9), Article 9. https://doi.org/10.21037/mhealth.2017.08.07
  • Messeri, L., & Crockett, M. J. (2024). Artificial intelligence and illusions of understanding in scientific research. Nature, 627(8002), 49–58. https://doi.org/10.1038/s41586-024-07146-0
  • Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007
  • Modiba, M. (2024). Application of conversational generative pre-trained transformer for improvement of information services in academic libraries. South African Journal of Libraries and Information Science, 90(1), Article 1. https://doi.org/10.7553/90-1-2384
  • Mondal, S., Das, S., Golder, S. S., Bose, R., Sutradhar, S., & Mondal, H. (2024). AI-driven big data analytics for personalized medicine in healthcare: Integrating federated learning, blockchain, and quantum computing. In 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICAIQSA64000.2024.10882330
  • Mondal, S., & Palit, D. (2022). Challenges in natural resource management for ecological sustainability. In M. K. Jhariya, R. S. Meena, A. Banerjee, & S. N. Meena (Eds.), Natural resources conservation and advances for sustainability (pp. 29–59). Elsevier. https://doi.org/10.1016/B978-0-12-822976-7.00004-1
  • Morande, S., Tewari, V., & Kukreja, J. (2025). Decoding the consumer mimic: Influencers, algorithms and the future of marketing. In A. Kumar, M. D. Ciddikie, A. K. Kashyap, & H. W. Akram (Eds.), Marketing 5.0 (pp. 43–56). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83797-815-120251004
  • Mottaghi-Dastjerdi, N., & Soltany-Rezaee-Rad, M. (2024). Advancements and applications of artificial intelligence in pharmaceutical sciences: A comprehensive review. Iranian Journal of Pharmaceutical Research, 23(1), e150510. https://doi.org/10.5812/ijpr-150510
  • Muwani, T. S., Ranganai, N., Zivanai, L., & Munyoro, B. (2022). The global digital divide and digital transformation: The benefits and drawbacks of living in a digital society. In Digital transformation for promoting inclusiveness in marginalized communities (pp. 217–236). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-3901-2.ch011
  • Naamati-Schneider, L. (2024). Enhancing AI competence in health management: Students' experiences with ChatGPT as a learning tool. BMC Medical Education, 24(1), 598. https://doi.org/10.1186/s12909-024-05595-9
  • Nadjia, M. (2024). The impact of artificial intelligence on legal systems: Challenges and opportunities. Проблеми Законності, 164, 285–303.
  • Nikolinakos, N. Th. (2023). Ethical principles for trustworthy AI. In N. Th. Nikolinakos (Ed.), EU policy and legal framework for artificial intelligence, robotics and related technologies—The AI Act (pp. 101–166). Springer International Publishing. https://doi.org/10.1007/978-3-031-27953-9_3
  • Ogilvie, A. D. (2024). Antisocial analagous behavior, alignment and human impact of Google AI systems: Evaluating through the lens of modified antisocial behavior criteria by human interaction, independent LLM analysis, and AI self-reflection. Computer & Society. https://doi.org/10.48550/arXiv.2403.15479
  • Okon-Singer, H., Hendler, T., Pessoa, L., & Shackman, A. J. (2015). The neurobiology of emotion–cognition interactions: Fundamental questions and strategies for future research. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00058
  • Ortony, A. (2022). Are all "basic emotions" emotions? A problem for the (basic) emotions construct. Perspectives on Psychological Science, 17(1), 41–61. https://doi.org/10.1177/1745691620985415
  • Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: An overview and a framework proposal. Review of Managerial Science. https://doi.org/10.1007/s11846-024-00738-0
  • Pal, S. (2023). A paradigm shift in research: Exploring the intersection of artificial intelligence and research methodology. International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 11(3), 1–7.
  • Pandey, D. K., Hunjra, A. I., Bhaskar, R., & Al-Faryan, M. A. S. (2023). Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022. Resources Policy, 86, 104250. https://doi.org/10.1016/j.resourpol.2023.104250
  • Pang, L.-G. (2024). Studying high-energy nuclear physics with machine learning. International Journal of Modern Physics E, 33(06), 2430009. https://doi.org/10.1142/S0218301324300091
  • Pattanayak, S. K. (2022). Generative AI for market analysis in business consulting: Revolutionizing data insights and competitive intelligence. International Journal of Enhanced Research in Management & Computer Applications, 11, 74–86.
  • Payadnya, I. P. A. A., Putri, G. A. M. A., Suwija, I. K., Saelee, S., & Jayantika, I. G. A. N. T. (2025). Cultural integration in AI-enhanced mathematics education: Insights from Southeast Asian educators. Journal for Multicultural Education, 19(1), 58–72. https://doi.org/10.1108/JME-09-2024-0119
  • Phillips, O. R., Harries, C., Leonardi-Bee, J., Knight, H., Sherar, L. B., Varela-Mato, V., & Morling, J. R. (2024). What are the strengths and limitations to utilising creative methods in public and patient involvement in health and social care research? A qualitative systematic review. Research Involvement and Engagement, 10, 48. https://doi.org/10.1186/s40900-024-00580-4
  • Prasad, A., Nagda, G., Syed, N., & Kumar, A. (2023). A detailed survey on awareness, knowledge and practice of pesticides used against various vegetables, fruits and cereal crops grown in and around Udaipur region of south Rajasthan, India. Bulletin of Pure & Applied Sciences- Zoology, 42(1), Article 1. https://doi.org/10.48165/bpas.2023.42A.1.6
  • Qayyum, J., Siddiqui, H. A., Al Prince, A., Ahmad, S., & Raza, M. (2025). Revolutionizing market insights through AI and data analytics: The next era of competitive intelligence. The Critical Review of Social Sciences Studies, 3(1), 3285–3302.
  • Radanliev, P. (2025). AI ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1), 2463722. https://doi.org/10.1080/08839514.2025.2463722
  • Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. Cogent Education, 11(1), 2293431. https://doi.org/10.1080/2331186X.2023.2293431
  • Raman, P. (2023). The transformative role of AI in social science research. Uniathena. https://uniathena.com/role-of-AI-in-social-science-research
  • Saheb, T., & Saheb, T. (2024). Mapping ethical artificial intelligence policy landscape: A mixed method analysis. Science and Engineering Ethics, 30(2), 9. https://doi.org/10.1007/s11948-024-00472-6
  • Santos, M. F. de L., & Jamil, S. (2024). Bridging the AI divide: Human and responsible AI in news and media industries. Emerging Media, 2(3), 335–346. https://doi.org/10.1177/27523543241291229
  • Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-01043-x
  • Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 353.
  • Schoser, B. (2023). Editorial: Framing artificial intelligence to neuromuscular disorders. Current Opinion in Neurology, 36(5), 424. https://doi.org/10.1097/WCO.0000000000001190
  • Sebastian, R., Kottekkadan, N. N., Thomas, T. K., & Niyas Kk, M. (2025). Generative AI tools (ChatGPT*) in social science research. Journal of Information, Communication and Ethics in Society, 23(2), 284–290. https://doi.org/10.1108/JICES-10-2024-0145
  • Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 125. https://doi.org/10.1186/s12911-021-01488-9
  • Senyapar, H. N. D. (2024). Artificial intelligence in marketing communication: A comprehensive exploration of the integration and impact of AI. Technium Social Sciences Journal, 55, 64–81. https://doi.org/10.47577/tssj.v55i1.10651
  • Shah, S. A. R., Zhang, Q., Abbas, J., Tang, H., & Al-Sulaiti, K. I. (2023). Waste management, quality of life and natural resources utilization matter for renewable electricity generation: The main and moderate role of environmental policy. Utilities Policy, 82, 101584. https://doi.org/10.1016/j.jup.2023.101584
  • Shao, Z., Yuan, S., Wang, Y., & Xu, J. (2021). Evolutions and trends of artificial intelligence (AI): Research, output, influence and competition. Library Hi Tech, 40(3), 704–724. https://doi.org/10.1108/LHT-01-2021-0018
  • Shin, D., Grover, S., Holstein, K., & Perer, A. (2021). Characterizing human explanation strategies to inform the design of explainable AI for building damage assessment (arXiv:2111.02626). arXiv. https://doi.org/10.48550/arXiv.2111.02626
  • Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2022). Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence (arXiv:2211.06318). arXiv. https://doi.org/10.48550/arXiv.2211.06318
  • Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances in theory and methodology. Annual Review of Clinical Psychology, 5, 1–25. https://doi.org/10.1146/annurev.clinpsy.032408.153639
  • Sun, T., Zhao, K., & Chen, M. (2024). Human-AI interaction: Human behavior routineness shapes AI performance. IEEE Transactions on Knowledge and Data Engineering, 36(12), 8476–8487. https://doi.org/10.1109/TKDE.2024.3480317
  • Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: Opportunities and risk for future. Gaceta Sanitaria, 35, S67–S70. https://doi.org/10.1016/j.gaceta.2020.12.019
  • Tao, Q., Chao, H., Fang, D., & Dou, D. (2024). Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regeneration Research, 19(1), 226. https://doi.org/10.4103/1673-5374.375342
  • Tapia, E. B. (2024). Artificial intelligence based on resilient leadership in the health sector. Revista Cientifica Global Negotium, 7(1), Article 1. https://doi.org/10.0833/rgn.v7i1.421
  • Thacharodi, A., Singh, P., Meenatchi, R., Tawfeeq Ahmed, Z. H., Kumar, R. R. S., V, N., Kavish, S., Maqbool, M., & Hassan, S. (2024). Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future—A comprehensive review. Health Care Science, 3(5), 329–349. https://doi.org/10.1002/hcs2.115
  • Tripathi, M. K., Nath, A., Singh, T. P., Ethayathulla, A. S., & Kaur, P. (2021). Evolving scenario of big data and artificial intelligence (AI) in drug discovery. Molecular Diversity, 25(3), 1439–1460. https://doi.org/10.1007/s11030-021-10256-w
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433
  • Wallin, J. A. (2005). Bibliometric methods: Pitfalls and possibilities. Basic & Clinical Pharmacology & Toxicology, 97(5), 261–275. https://doi.org/10.1111/j.1742-7843.2005.pto_139.x
  • Wan, Q., Miao, X., & Afshan, S. (2022). Dynamic effects of natural resource abundance, green financing, and government environmental concerns toward the sustainable environment in China. Resources Policy, 79, 102954. https://doi.org/10.1016/j.resourpol.2022.102954
  • Wang, C., Chen, X., Yu, T., Liu, Y., & Jing, Y. (2024). Education reform and change driven by digital technology: A bibliometric study from a global perspective. Humanities and Social Sciences Communications, 11(1), 1–17. https://doi.org/10.1057/s41599-024-02717-y
  • Wang, F., Guo, W., Xue, R., Baron, C., & Jia, C. (2025). Exploring the subject heterogeneity of scientific research projects funding-example of the Chinese natural science foundation. Information Processing & Management, 62(4), 104098. https://doi.org/10.1016/j.ipm.2025.104098
  • Wang, H. (2020). Corporate social responsibility in China. In S. Seifi (Ed.), The Palgrave handbook of corporate social responsibility (pp. 1–24). Springer International Publishing. https://doi.org/10.1007/978-3-030-22438-7_71-1
  • Wiederhold, B. K. (2025). The rise of synthetic societies: Is there a role for humans? Cyberpsychology, Behavior, and Social Networking. https://doi.org/10.1089/cyber.2025.0067
  • Wu, L., Kim, M., & Markauskaite, L. (2020). Developing young children's empathic perception through digitally mediated interpersonal experience: Principles for a hybrid design of empathy games. British Journal of Educational Technology, 51(4), 1168–1187. https://doi.org/10.1111/bjet.12918
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4). https://doi.org/10.1016/j.xinn.2021.100179
  • Yusuf, A., Pervin, N., & Román-González, M. (2024). Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1), 21. https://doi.org/10.1186/s41239-024-00453-6
  • Zhu, J.-J., Yang, M., & Ren, Z. J. (2023). Machine learning in environmental research: Common pitfalls and best practices. Environmental Science & Technology, 57(46), 17671–17689. https://doi.org/10.1021/acs.est.3c00026
  • 高芳. (2018). 全球知名智库对中国《新一代人工智能发展规划》发布与实施情况的评价及启示. 情报工程, 4(2), 026–035.
There are 131 citations in total.

Details

Primary Language English
Subjects Curriculum and Instration (Other)
Journal Section Reviews
Authors

Zahid Zufar At Thaariq 0000-0003-3354-4488

Ence Surahman This is me 0000-0002-8850-4275

Mohammad Sameer Khader Jaradat This is me 0009-0008-9836-7893

Irene Mega Mellyana This is me 0009-0001-5514-9254

Publication Date May 31, 2025
Submission Date April 14, 2025
Acceptance Date May 28, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Thaariq, Z. Z. A., Surahman, E., Jaradat, M. S. K., Mellyana, I. M. (2025). Trends in Using Artificial Intelligence in Social and Natural Science Research. TAM Akademi Dergisi, 4(1), 100-132. https://doi.org/10.58239/tamde.2025.01.006.x

Indices   

 21487     21490          asos-index.png    


Our e-mail address for contact: editor@tamde.org


All articles in this journal are licensed under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).


Journal of TAM Academy is an open access journal. Readers can access all articles without registration and without paying.