Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi

Year 2017, Volume 13, Issue 1, 55 - 67, 26.12.2017

Abstract

Bu çalışmada, damla sulama sistemlerinde kullanılan hidrosiklon filtre içindeki toplam basınç kaybı ve partikül hareketine bağlı ayırma etkinliği değerlerinin, Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemiyle ortaya konulması amaçlanmıştır. Bu amaçla, E.Ü. Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü’ndeki Pompa Deneme ve Araştırma Laboratuvarında basınç (yük) kayıp denemeleri temiz su kullanılarak gerçekleştirilmiş olan 2″, 2½″, 3″ ve 4″ giriş ve çıkış çapına sahip toplam 8 adet hidrosiklon filtre kullanılmıştır.

Laboratuvar denemelerinde kullanılan her bir filtrenin tüm boyutları dikkate alınarak katı modelleri oluşturulmuş ve farklı sınır koşulları için RNG k-ε Model, Realizable k-ε Model ve Reynolds Gerilme Modeli (RSM) türbülans modelleri dikkate alınarak akış analizleri Hesaplamalı Akışkanlar Dinamiği (HAD) yazılımı ANSYS Fluent 16.2 yardımıyla gerçekleştirilmiştir. Analizler sonunda, farklı debi değerlerinde ölçülen basınç kayıp değerlerini genel olarak en iyi tahminleyen model, Reynolds Gerilme Modeli (RSM) olmuştur. Bu model ile ayırma etkinliği değerlerine ilişkin simülasyon çalışmaları gerçekleştirilmiş ve yeni dizayn edilen bir hidrosiklon filtrede simülasyon çalışmaları ile partikül ayırma etkinliğinin belirli bir doğrulukla ortaya konulabileceği sonucuna ulaşılmıştır.

References

  • ANSYS Fluent Theory Guide, 2016. Release 17.2 August 2016 ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 A
  • Asomah, I.K. and Napier-Munn, T.J. , 1997, An empirical model of hydrocyclones, incorporating angle of cyclone inclination, Minerals Engineering, 10(3):339–347.
  • Bhaskar, K.U., Murthy, Y.R., Raju, M.R., Tiwari, S., Srivastava, J.K. and Ramakrishnan, N., 2007, CFD simulation and experimental validation studies on hydrocyclone, Minerals Engineering, 20:60-71.
  • Bradley, 1965 The Hydrocyclone. Pergamon Press Ltd. London
  • Bucks, D.A., Nakayama, F.S. and Gilbert, R.G., 1979, Trickle irrigation water quality and preventive maintenance. Agricultural Water Management, 2:149-162.
  • Bulancak,S., 2000. Ege Bölgesi Pamuk Tarımında Damla Sulama Sistemlerinin Uygulanabilirliğinde Filtre Seçimi ve Performansı Üzerinde Bir Araştırma, E.Ü. Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi), İZMİR.
  • Chen, W., Zydek, N. and Parma, F., 2000, Evaluation of hydrocyclone models for practical applications, Chemical Engineering Journal, 80(1-3):295-303.
  • Chu, L.Y., Chen, W.M. and Lee, X.Z., 2002, Effects of geometric and operating parameters and feed characters on the motion of solid particles in hydrocyclones, Separation and Purification Technology, 26, 237-246.
  • Concha, F., 2007. Flow pattern in hydrocyclones, KONA Powder and Particle Journal, 25, 97-132.
  • Çengel, Y.A. ve Cimbala, J.M., 2008, Akışkanlar Mekaniği Temelleri ve Uygulamaları, (Editör: T. Engin, Editör Yardımcıları: H. R. Öz, H. Küçük, Ş. Çeşmeci), Güven Bilimsel, İzmir Güven Kitabevi, İzmir
  • Dabir, B., 1983, Mean Velocity Measurements in a 3"-Hydrocyclone using Laser Doppler Anemometry, Ph.D Thesis, Michigan State University, Dept. of Chemical Engineering
  • Davailles, A., Climent, E. and Bourgeois, F., 2012, Fundamental understanding of swirling flow pattern in hydrocyclones, Separation and Purification Technology, 92:152-160.
  • Delgadillo, J.A. and Rajamani, R.K., 2005, A comparative study of three turbulance-closure models for the hydrocyclone problem, International Journal of Mineral Processing, 77 (01), 217-230.
  • Delgadillo, J.A. and Rajamani, R.K., 2007, Large-Eddy Simulation (LES) of large hydrocyclones, Particulate Science and Technology, 25: 227–245.
  • Demir, V. ve Uz, E., 1994, Damla sulama sistemlerinde kullanılan filtreler, Ege Üniversitesi Ziraat Fakültesi Dergisi, Cilt:31, Sayı:2-3, 177-184.
  • Elsayed, K. and Lacor, C., 2009, Investigation of the geometrical parameters effects on the performance and the flow-field of cyclone separators using mathematical models and Large Eddy Simulation, 13th International Conference on Aerospace Sciences & Aviation Technology, May 26-28, 2009, Military Technical College, Kobry Elkobbah, Cairo, Egypt.
  • English, S.D.,1985, Filtration and water treatment for micro irrigation, In drip/trickle irrigation in action: Proc.Third Inter’l Drip/Trickle Irrigation Congress, California, USA, 50-57.
  • Faulkner, W. B., Buser, M. D., Whitelock, D. P. and Shaw B. W., 2007. Effects of cyclone diameter on performance of 1d3d cyclones: cutpoint and slope. Structures & Environment Division of ASABE in November 2007.
  • Gilbert, R.G., Ford, H.W.,1986, Operational principles/emitter clogging, 142-187, Trickle Irrigation for Crop Production, Nakayama, F.S. and Bucks, D.A. (Eds.), Elsevier Science Publishers B.V., Amsterdam, 383.
  • Gimbun, J., Chuah, T.G., Choong, T.S.Y. and Fakhru'l-Razi, A., 2005, A CFD study on the prediction of cyclone collection efficiency, International Journal for Computational Methods in Engineering Science and Mechanics, 6:161-168.
  • He, P., Salcudean, M. and Gartshore, I.S., 1999, A numerical simulation of hydrocyclones, Trans. Inst. Chem. Eng., 77 (A):429-441.
  • Holdich, R.G., 2002, Fundamentals of Particle Technology, Midland Information Technology & Publishing, Shepshed, Leicestershire, 182.
  • Hsieh, K.T, 1988, Phenomenological Model of the Hydrocyclone, Ph.D Thesis, University of Utah, Dept. of Metallurgy and Metallurgical Engineering.
  • Hsu, C.Y., Wu, S.J. and Wu, R.M., 2011. Particles separation and tracks in a hydrocyclone. Tamkang Journal of Science and Engineering, 14 (1), 65-70.
  • Kaya, F. ve Karagöz, İ. 2007, Girdaplı akışlarda türbülans modellerinin uygunluğunun incelenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 12 (1), 85-96.
  • Kraipech, W., Chen, W., Dyakowski, T. and Nowakowski, A., 2006, The performance of the empirical models on industrial hydrocyclone design, International Journal of Mineral Processing, 80(2-4):100-115.
  • Martinez, L.F., Lavin, A.G., Mahamud, M.M., Bueno J.L., 2008. Vortex finder optimum length in hydrocyclone separation, Chemical Engineering and Processing 47 (2) 192–199.
  • Mular A.L. 2003. Size Separation. Chapter 4 in Principles of Mineral Processing. (Ed. Maurice C. F., and Kenneth N. H., 2003)., Society for Mining, Metallurgy, and Exploration Inc. (SME) 8307 Shaffer Parkway Littleton, Colorado, USA 80127
  • Munson, B.R. Young D.F. and Okiishi, T. H., 2006. Fundamentals of Fluid Mechanics, 6. Basım, J. Wiley and Sons Nageswararao, K., Wiseman, D. M. and Napier-Munn, T. J., 2004, Two empirical hydrocyclone models revisited, Minerals Engineering, 17(5):671-687.
  • Napier-Munn, T.J., Morrell, S., Morrison, R.D. and Kojovic, T., 1996, Mineral comminution circuits-their operation and optimisation, JKMRC Monograph Series, Julius Kruttschnitt Mineral Research Centre, University of Queensland, Brisbane, 413.
  • Narasimha, M., Brennan M., and Holtham P.N., 2007. A Review of CFD Modelling for Performance Predictions of Hydrocyclone. Engineering Applications of Computational Fluid Mechanics, 1:2, 109-125, DOI: 10.1080/19942060.2007.11015186
  • Neesse T. and Dueck, J., 2007, Dynamic modelling of the hydrocyclone, Minerals Engineering, 20:380-386. Plitt, L. R., 1976. A mathematical model of the hydrocyclone classifier. CIM Bulletin, pp. 114-123 Rietema, K., 1962. Cyclones in Industry. Elsevier
  • Rushton, A., Ward, A.S. and Holdich, R.G., 2000, Solid-Liquid Filtration and Separation Technology, WILEY-VCH Verlag GmbH, Weinheim, 542.
  • Salopek, B., Filipovic S., and Dragan K., 1995. Possibilities of the efficient solid-liquid separation, in the hydrocyclone of 25 mm diameter. Rudarsko-geoldko-naftni zbornik (7) 71-75.
  • Shojaeefard, M.H., Noorpoor, A., Yarjiabadi, H. and Habibian, M., 2006, Particle size effects on hydro-cyclone performance, IUST International Journal of Engineering Science, 17 (3-4), 9-19.
  • Svarovsky, L. and Thew, M.T., 1992, Hydrocyclones: Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 413.
  • Svarovsky, L. 2000, Solid-Liquid Seperation. 4th Edition, Butterworths-Heinemann. London.
  • Şafak, Z., 2005, Filtreler ve Ayırıcılar, Yüksek Lisans Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir. Şahin Kılavuz F., 2007, Küçük Çaplı Hidrosiklonlarda İşlem Değişkenlerinin Ayırım Etkinliği Üzerine Etkilerinin Araştırılması, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Wang, B. and Yu, A.B., 2006, Numerical study of particle-fluid flow in hydrocyclones with different body dimensions, Minerals Engineering, 19:1022-1033.
  • Wang, L., 2004. Theoretical Study of Cyclone Design. PhD. Thesis, Texas A&M University
  • Wang, L., Zheng, Z., Wu, Y., Guo, J., Zhang, J. and Tang, C., 2009, Numerical and experimental study on liquid-solid flow in a hydrocyclone, Journal of Hydrodynamics, 21(3): 408-414.
  • White, F. M., 2001. Fluid Mechanics, 4th Edition, McGraw Hill
  • Young, D.F., Munson, B.R. Okiishi, T.H., and Huebsch, W.W. 2013. A Brief Introduction to Fluid Mechanics, 5th Edition, Wiley and Sons, ve Türkçe Çevirisi (Nuri Yücel, Nureddin Dinler, Haşmet Türkoğlu, Zekeriya Altaç, Nobel Yayınevi. Yurdem, H., Demir, V. and Degirmencioglu, A., 2010, Development of a mathematical model to predict clean water head losses in hydrocyclone filters in drip irrigation systems using dimensional analysis, Biosystems Engineering, 105 (4):495-506 pp, doi:10.1016/j.biosystemseng.2010.02.001.
  • NetafimUSA, 2016. http://www.netafimusa.com/agriculture/ products/sand-separators-op

Year 2017, Volume 13, Issue 1, 55 - 67, 26.12.2017

Abstract

References

  • ANSYS Fluent Theory Guide, 2016. Release 17.2 August 2016 ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 A
  • Asomah, I.K. and Napier-Munn, T.J. , 1997, An empirical model of hydrocyclones, incorporating angle of cyclone inclination, Minerals Engineering, 10(3):339–347.
  • Bhaskar, K.U., Murthy, Y.R., Raju, M.R., Tiwari, S., Srivastava, J.K. and Ramakrishnan, N., 2007, CFD simulation and experimental validation studies on hydrocyclone, Minerals Engineering, 20:60-71.
  • Bradley, 1965 The Hydrocyclone. Pergamon Press Ltd. London
  • Bucks, D.A., Nakayama, F.S. and Gilbert, R.G., 1979, Trickle irrigation water quality and preventive maintenance. Agricultural Water Management, 2:149-162.
  • Bulancak,S., 2000. Ege Bölgesi Pamuk Tarımında Damla Sulama Sistemlerinin Uygulanabilirliğinde Filtre Seçimi ve Performansı Üzerinde Bir Araştırma, E.Ü. Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi), İZMİR.
  • Chen, W., Zydek, N. and Parma, F., 2000, Evaluation of hydrocyclone models for practical applications, Chemical Engineering Journal, 80(1-3):295-303.
  • Chu, L.Y., Chen, W.M. and Lee, X.Z., 2002, Effects of geometric and operating parameters and feed characters on the motion of solid particles in hydrocyclones, Separation and Purification Technology, 26, 237-246.
  • Concha, F., 2007. Flow pattern in hydrocyclones, KONA Powder and Particle Journal, 25, 97-132.
  • Çengel, Y.A. ve Cimbala, J.M., 2008, Akışkanlar Mekaniği Temelleri ve Uygulamaları, (Editör: T. Engin, Editör Yardımcıları: H. R. Öz, H. Küçük, Ş. Çeşmeci), Güven Bilimsel, İzmir Güven Kitabevi, İzmir
  • Dabir, B., 1983, Mean Velocity Measurements in a 3"-Hydrocyclone using Laser Doppler Anemometry, Ph.D Thesis, Michigan State University, Dept. of Chemical Engineering
  • Davailles, A., Climent, E. and Bourgeois, F., 2012, Fundamental understanding of swirling flow pattern in hydrocyclones, Separation and Purification Technology, 92:152-160.
  • Delgadillo, J.A. and Rajamani, R.K., 2005, A comparative study of three turbulance-closure models for the hydrocyclone problem, International Journal of Mineral Processing, 77 (01), 217-230.
  • Delgadillo, J.A. and Rajamani, R.K., 2007, Large-Eddy Simulation (LES) of large hydrocyclones, Particulate Science and Technology, 25: 227–245.
  • Demir, V. ve Uz, E., 1994, Damla sulama sistemlerinde kullanılan filtreler, Ege Üniversitesi Ziraat Fakültesi Dergisi, Cilt:31, Sayı:2-3, 177-184.
  • Elsayed, K. and Lacor, C., 2009, Investigation of the geometrical parameters effects on the performance and the flow-field of cyclone separators using mathematical models and Large Eddy Simulation, 13th International Conference on Aerospace Sciences & Aviation Technology, May 26-28, 2009, Military Technical College, Kobry Elkobbah, Cairo, Egypt.
  • English, S.D.,1985, Filtration and water treatment for micro irrigation, In drip/trickle irrigation in action: Proc.Third Inter’l Drip/Trickle Irrigation Congress, California, USA, 50-57.
  • Faulkner, W. B., Buser, M. D., Whitelock, D. P. and Shaw B. W., 2007. Effects of cyclone diameter on performance of 1d3d cyclones: cutpoint and slope. Structures & Environment Division of ASABE in November 2007.
  • Gilbert, R.G., Ford, H.W.,1986, Operational principles/emitter clogging, 142-187, Trickle Irrigation for Crop Production, Nakayama, F.S. and Bucks, D.A. (Eds.), Elsevier Science Publishers B.V., Amsterdam, 383.
  • Gimbun, J., Chuah, T.G., Choong, T.S.Y. and Fakhru'l-Razi, A., 2005, A CFD study on the prediction of cyclone collection efficiency, International Journal for Computational Methods in Engineering Science and Mechanics, 6:161-168.
  • He, P., Salcudean, M. and Gartshore, I.S., 1999, A numerical simulation of hydrocyclones, Trans. Inst. Chem. Eng., 77 (A):429-441.
  • Holdich, R.G., 2002, Fundamentals of Particle Technology, Midland Information Technology & Publishing, Shepshed, Leicestershire, 182.
  • Hsieh, K.T, 1988, Phenomenological Model of the Hydrocyclone, Ph.D Thesis, University of Utah, Dept. of Metallurgy and Metallurgical Engineering.
  • Hsu, C.Y., Wu, S.J. and Wu, R.M., 2011. Particles separation and tracks in a hydrocyclone. Tamkang Journal of Science and Engineering, 14 (1), 65-70.
  • Kaya, F. ve Karagöz, İ. 2007, Girdaplı akışlarda türbülans modellerinin uygunluğunun incelenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 12 (1), 85-96.
  • Kraipech, W., Chen, W., Dyakowski, T. and Nowakowski, A., 2006, The performance of the empirical models on industrial hydrocyclone design, International Journal of Mineral Processing, 80(2-4):100-115.
  • Martinez, L.F., Lavin, A.G., Mahamud, M.M., Bueno J.L., 2008. Vortex finder optimum length in hydrocyclone separation, Chemical Engineering and Processing 47 (2) 192–199.
  • Mular A.L. 2003. Size Separation. Chapter 4 in Principles of Mineral Processing. (Ed. Maurice C. F., and Kenneth N. H., 2003)., Society for Mining, Metallurgy, and Exploration Inc. (SME) 8307 Shaffer Parkway Littleton, Colorado, USA 80127
  • Munson, B.R. Young D.F. and Okiishi, T. H., 2006. Fundamentals of Fluid Mechanics, 6. Basım, J. Wiley and Sons Nageswararao, K., Wiseman, D. M. and Napier-Munn, T. J., 2004, Two empirical hydrocyclone models revisited, Minerals Engineering, 17(5):671-687.
  • Napier-Munn, T.J., Morrell, S., Morrison, R.D. and Kojovic, T., 1996, Mineral comminution circuits-their operation and optimisation, JKMRC Monograph Series, Julius Kruttschnitt Mineral Research Centre, University of Queensland, Brisbane, 413.
  • Narasimha, M., Brennan M., and Holtham P.N., 2007. A Review of CFD Modelling for Performance Predictions of Hydrocyclone. Engineering Applications of Computational Fluid Mechanics, 1:2, 109-125, DOI: 10.1080/19942060.2007.11015186
  • Neesse T. and Dueck, J., 2007, Dynamic modelling of the hydrocyclone, Minerals Engineering, 20:380-386. Plitt, L. R., 1976. A mathematical model of the hydrocyclone classifier. CIM Bulletin, pp. 114-123 Rietema, K., 1962. Cyclones in Industry. Elsevier
  • Rushton, A., Ward, A.S. and Holdich, R.G., 2000, Solid-Liquid Filtration and Separation Technology, WILEY-VCH Verlag GmbH, Weinheim, 542.
  • Salopek, B., Filipovic S., and Dragan K., 1995. Possibilities of the efficient solid-liquid separation, in the hydrocyclone of 25 mm diameter. Rudarsko-geoldko-naftni zbornik (7) 71-75.
  • Shojaeefard, M.H., Noorpoor, A., Yarjiabadi, H. and Habibian, M., 2006, Particle size effects on hydro-cyclone performance, IUST International Journal of Engineering Science, 17 (3-4), 9-19.
  • Svarovsky, L. and Thew, M.T., 1992, Hydrocyclones: Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 413.
  • Svarovsky, L. 2000, Solid-Liquid Seperation. 4th Edition, Butterworths-Heinemann. London.
  • Şafak, Z., 2005, Filtreler ve Ayırıcılar, Yüksek Lisans Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir. Şahin Kılavuz F., 2007, Küçük Çaplı Hidrosiklonlarda İşlem Değişkenlerinin Ayırım Etkinliği Üzerine Etkilerinin Araştırılması, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Wang, B. and Yu, A.B., 2006, Numerical study of particle-fluid flow in hydrocyclones with different body dimensions, Minerals Engineering, 19:1022-1033.
  • Wang, L., 2004. Theoretical Study of Cyclone Design. PhD. Thesis, Texas A&M University
  • Wang, L., Zheng, Z., Wu, Y., Guo, J., Zhang, J. and Tang, C., 2009, Numerical and experimental study on liquid-solid flow in a hydrocyclone, Journal of Hydrodynamics, 21(3): 408-414.
  • White, F. M., 2001. Fluid Mechanics, 4th Edition, McGraw Hill
  • Young, D.F., Munson, B.R. Okiishi, T.H., and Huebsch, W.W. 2013. A Brief Introduction to Fluid Mechanics, 5th Edition, Wiley and Sons, ve Türkçe Çevirisi (Nuri Yücel, Nureddin Dinler, Haşmet Türkoğlu, Zekeriya Altaç, Nobel Yayınevi. Yurdem, H., Demir, V. and Degirmencioglu, A., 2010, Development of a mathematical model to predict clean water head losses in hydrocyclone filters in drip irrigation systems using dimensional analysis, Biosystems Engineering, 105 (4):495-506 pp, doi:10.1016/j.biosystemseng.2010.02.001.
  • NetafimUSA, 2016. http://www.netafimusa.com/agriculture/ products/sand-separators-op

Details

Subjects Science
Journal Section Articles
Authors

Vedat DEMİR
0000-0001-8341-9672
Türkiye


Hüseyin YÜRDEM
0000-0003-2711-2697
Türkiye


Tuncay GÜNHAN
Türkiye


Arzu YAZGI
0000-0003-0141-8882
Türkiye

Publication Date December 26, 2017
Published in Issue Year 2017, Volume 13, Issue 1

Cite

Bibtex @research article { tarmak375255, journal = {Tarım Makinaları Bilimi Dergisi}, issn = {1306-0007}, eissn = {2651-4230}, address = {}, publisher = {Tarım Makinaları Derneği}, year = {2017}, volume = {13}, pages = {55 - 67}, doi = {}, title = {Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi}, key = {cite}, author = {Demir, Vedat and Yürdem, Hüseyin and Günhan, Tuncay and Yazgı, Arzu} }
APA Demir, V. , Yürdem, H. , Günhan, T. & Yazgı, A. (2017). Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi . Tarım Makinaları Bilimi Dergisi , 13 (1) , 55-67 . Retrieved from https://dergipark.org.tr/en/pub/tarmak/issue/33738/375255
MLA Demir, V. , Yürdem, H. , Günhan, T. , Yazgı, A. "Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi" . Tarım Makinaları Bilimi Dergisi 13 (2017 ): 55-67 <https://dergipark.org.tr/en/pub/tarmak/issue/33738/375255>
Chicago Demir, V. , Yürdem, H. , Günhan, T. , Yazgı, A. "Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi". Tarım Makinaları Bilimi Dergisi 13 (2017 ): 55-67
RIS TY - JOUR T1 - Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi AU - Vedat Demir , Hüseyin Yürdem , Tuncay Günhan , Arzu Yazgı Y1 - 2017 PY - 2017 N1 - DO - T2 - Tarım Makinaları Bilimi Dergisi JF - Journal JO - JOR SP - 55 EP - 67 VL - 13 IS - 1 SN - 1306-0007-2651-4230 M3 - UR - Y2 - 2017 ER -
EndNote %0 Journal of Agricultural Machinery Science Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi %A Vedat Demir , Hüseyin Yürdem , Tuncay Günhan , Arzu Yazgı %T Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi %D 2017 %J Tarım Makinaları Bilimi Dergisi %P 1306-0007-2651-4230 %V 13 %N 1 %R %U
ISNAD Demir, Vedat , Yürdem, Hüseyin , Günhan, Tuncay , Yazgı, Arzu . "Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi". Tarım Makinaları Bilimi Dergisi 13 / 1 (December 2017): 55-67 .
AMA Demir V. , Yürdem H. , Günhan T. , Yazgı A. Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi. TMBD. 2017; 13(1): 55-67.
Vancouver Demir V. , Yürdem H. , Günhan T. , Yazgı A. Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi. Tarım Makinaları Bilimi Dergisi. 2017; 13(1): 55-67.
IEEE V. Demir , H. Yürdem , T. Günhan and A. Yazgı , "Damla Sulama Sistemlerinde Kullanılan Hidrosiklon Filtrelerde Basınç Kaybı ve Ayırma Etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) Yöntemi ile Belirlenmesi", Tarım Makinaları Bilimi Dergisi, vol. 13, no. 1, pp. 55-67, Dec. 2017

Journal of Agricultural Machinery Science is a refereed scientific journal published by the Agricultural Machinery Association as 3 issues a year.