Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Determining the Droplet Size Classification of Hollow Cone Nozzles with Droplet Image Analysis

Year 2017, Volume 13, Issue 2, 121 - 126, 26.12.2017

Abstract

Considering the harmful effects of pesticides, it is necessary to apply them very precisely. The selection of nozzle in pesticide applications is a matter of particular attention. The size of the droplet is very important for fighting with disease and pest. Coarser droplets run-off from the plant while finer droplets are prone to drift. For this reason, it is necessary to determine the droplet diameter in order to reduce drift. Volume median diameter is commonly used for understanding droplet size in the spray pattern.

Due to the direct effect of the size of the droplet, a large number of studies have been conducted on the nozzles. But there are still some missing parts. For this reason, every year the nozzle manufacturers put a new type of nozzle on the market.

In this study, the volume median diameter of different sized (0.8 and 1.0) hollow cone nozzles widely used in Turkey at different pressures (6, 9, 12 bar) in constant temperature and relative humidity were determined by Oxford Visisizer-PDIA (Particle Droplet Image Analysis). It has been determined that the volume median diameter of these two sizes of nozzles, which are tested at lower pressures, is very close to each other.

References

  • Anonymous, 2001. Selecting the Correct Nozzle to Reduce Spray Drift. Iowa State University. University Extension. IPM 68.
  • Anonymous, 2002. Spray Drift Management: Principles, Strategies and Supporting Information. Primary Industries Standing Committee. Report 82. 57 pages.
  • Anonymous, 2009. The Threat of Pesticide Spray Drift. National Toxics Network Inc.
  • Anonymous, 2017a. http://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements Anonymous, 2017b. https://grdc.com.au/Media-Centre/Ground-Cover-Supplements/Ground-Cover-Issue-122-Spray-application/Spray-speak-droplet-and-drift-terminology
  • Anonymous, 2017c. http://www.ipmnet.org/tim/pesticide_ed/Pesticide_Courses__2013/Chem_App/Dugan_Peterson Spray_Tips,_Droplet_Size_and_Calibration.pdf
  • Anonymous, 2017d. B. Wolf, B. Grisso, P. Hpikins, T. Reed http://offices.ext.vt.edu/carroll/programs/anr/cc_pesticide_training_files/droplets_v6.pdf
  • Anonymous, 2017e. A Brief Manual for Oxford Laser Imaging System and Visisize Software
  • Anonymous, 2017f. https://www.oxfordlasers.com/imaging/particle-size-measurement/
  • Anonymous, 2017g. http://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements Anonymous, 2017h. http://www.bete-nozzles.com/services/nozzle-basics/droplet-size.html
  • Anonymous, 2017i. http://cdn2.hubspot.net/hub/95784/file-32015844-pdf/docs/asabe_s572.1_droplet_size_classification.pdf
  • ASABE S572.1, Standard of Droplet Size Classification. The American Society of Agricultural and Biological Engineers (ASABE).
  • Caner, Ö. K., (2007). Yardımcı Hava Akımlı Hidrolik Pülverizatörle Bağ İlaçlamasında Toprak Yüzeyine Sürüklenmeyi Azaltmaya Yönelik En Uygun Kullanım Koşullarının Belirlenmesi, (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Bornova-İzmir (Yayınlanmamış).
  • Chaker M., C. B. Meher-Homji, T. Mee, 2002. Inlet Fogging of Gas Turbine Engines - Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing. Proceedings of ASME Turbo Expo 2002 June 3-6, 2002 Amsterdam, The Netherlands
  • Czacyk Z., G. Kruger, A. Hewitt, 2012. Droplet Size Classification of Air Induction Flat Fan Nozzles. Journal of Plant Protection Research Vol. 52, No. 4 (2012) DOI: 10.2478/v10045-012-0068-6
  • Damalas C. A. and I. G. Eleftherohorinos, 2011. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J Environ Res Public Health. 2011 May; 8(5): 1402–1419. doi: 10.3390/ijerph8051402
  • Delormes P., 2009. Habitat Protection from Pesticide Spray Drift: The Canadian Approach. Report of the Seminar on Pesticide Risk Reduction through Spray Drift Reduction Strategies as Part of National Risk Management. OECD Environment, Health and Safety Publications Series on Pesticides No. 46. Pp. 26-33.
  • Derksen, R. C., H. E. Ozkan, R. D. Fox and R. D. Brazee, 1997. Effectiveness of TurboDrop and Turbo TeeJet nozzles in drift reduction. ASAE Paper No. 971070, ASAE, 2950 Niles Road, St. Joseph, MI 49085.
  • Grisso, R., P. Hipkins, S. D. Askew, L. Hipkins, D. Mccall, 2013. Nozzles: Selection and Sizing. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University. Publication 442-032. https://pubs.ext.vt.edu/442/442-032/442-032_pdf.pdf
  • Gordon B., 2017. Spray Application Manual for Grain Growers. Grain Research and Development Corporation Grow Notes, pp 22.
  • Guler, H., H. Zhu, H. E. Ozkan, R. C. Derksen, Y. Yu, and C. R. Krause. 2007. Spray characteristics and drift reduction potential with air induction and conventional flat‐fan nozzles. Trans. ASABE 50(3): 745‐754.
  • Harasta P., 2009. Drift Reduction Possibilities in the Czech Republic. Report of the Seminar on Pesticide Risk Reduction through Spray Drift Reduction Strategies as Part of National Risk Management. OECD Environment, Health and Safety Publications Series on Pesticides No. 46. Pp. 43-48.
  • Immig J., 2009. The Threat of Pesticide Spray Drift. A Community Information and Action Kit Johnson M. P. and L. D. Swetnam, 2000. Sprayer Nozzles: Selection and Calibration. University of Kentucky Cooperative Extension Service. PAT-3.
  • Matthews G.A, 2000. Pesticide Application Methods. Blackwell Sciences. ISBN 0-632-05473-5. p. 431 Nuyttens D., M. De Schampheleire, P. Verboven, E. Brusselman, D. Dekeyser, 2009. Droplet Size and Velocity Characteristics of Agricultural Sprays. Transactions of the ASABE Vol. 52(5): 1471-1480, American Society of Agricultural and Biological Engineers ISSN 0001-2351. Pp. 1471-1480.
  • Nuyttens D., Baetens K., Schampheleire M. De, Sonck B., 2006. PDPA Laser Based Characterization of Agricultural Sprays. Agricultural Engineering International: the CIGR Ejournal. Manuscript PM 06 024. Vol. VIII. December, 2006. Petersen D., 2014. WA Weed Conference – Crop Session. Pp. 4
  • Schick R. J., 1997. General Guidelines on Drop Size Measurement Techniques and Terminology. As presented at the 47th Chemical Processing Industry Exposition, Javits Convention Center, New York, November 1997.
  • Urkan, E., (2012). Farklı Tip Memelerle Bağ İlaçlamasında Pülverizatör Performansının ve Sürüklenmenin Belirlenmesi, (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Bornova-İzmir (Yayınlanmamış). Wilson J., J. Nowatzki, V. Hofman, 2008. Selecting Drift-Reducing Nozzles. South Dakota Cooperative Extension Service. FS 919 Rev. 6/08
  • Wolf R.E. and S. Brettbauer, 2009. Droplet Size Calibration: A New Approach to Effective Spraying. Kansas State University Agricultural Experiment Station and Cooperative Extension Service.
  • Zande, J. van de, H. A. J. Porskamp, H. J. Holterman, 2002. Influence of Reference Nozzle Choice on Spray Drift Classification. Aspects Appl. Biol., Intl. Adv. Pest. Appl. 66: 49‐55.

Year 2017, Volume 13, Issue 2, 121 - 126, 26.12.2017

Abstract

References

  • Anonymous, 2001. Selecting the Correct Nozzle to Reduce Spray Drift. Iowa State University. University Extension. IPM 68.
  • Anonymous, 2002. Spray Drift Management: Principles, Strategies and Supporting Information. Primary Industries Standing Committee. Report 82. 57 pages.
  • Anonymous, 2009. The Threat of Pesticide Spray Drift. National Toxics Network Inc.
  • Anonymous, 2017a. http://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements Anonymous, 2017b. https://grdc.com.au/Media-Centre/Ground-Cover-Supplements/Ground-Cover-Issue-122-Spray-application/Spray-speak-droplet-and-drift-terminology
  • Anonymous, 2017c. http://www.ipmnet.org/tim/pesticide_ed/Pesticide_Courses__2013/Chem_App/Dugan_Peterson Spray_Tips,_Droplet_Size_and_Calibration.pdf
  • Anonymous, 2017d. B. Wolf, B. Grisso, P. Hpikins, T. Reed http://offices.ext.vt.edu/carroll/programs/anr/cc_pesticide_training_files/droplets_v6.pdf
  • Anonymous, 2017e. A Brief Manual for Oxford Laser Imaging System and Visisize Software
  • Anonymous, 2017f. https://www.oxfordlasers.com/imaging/particle-size-measurement/
  • Anonymous, 2017g. http://www.spray-nozzle.co.uk/resources/engineering-resources/droplet-size-measurements Anonymous, 2017h. http://www.bete-nozzles.com/services/nozzle-basics/droplet-size.html
  • Anonymous, 2017i. http://cdn2.hubspot.net/hub/95784/file-32015844-pdf/docs/asabe_s572.1_droplet_size_classification.pdf
  • ASABE S572.1, Standard of Droplet Size Classification. The American Society of Agricultural and Biological Engineers (ASABE).
  • Caner, Ö. K., (2007). Yardımcı Hava Akımlı Hidrolik Pülverizatörle Bağ İlaçlamasında Toprak Yüzeyine Sürüklenmeyi Azaltmaya Yönelik En Uygun Kullanım Koşullarının Belirlenmesi, (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Bornova-İzmir (Yayınlanmamış).
  • Chaker M., C. B. Meher-Homji, T. Mee, 2002. Inlet Fogging of Gas Turbine Engines - Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing. Proceedings of ASME Turbo Expo 2002 June 3-6, 2002 Amsterdam, The Netherlands
  • Czacyk Z., G. Kruger, A. Hewitt, 2012. Droplet Size Classification of Air Induction Flat Fan Nozzles. Journal of Plant Protection Research Vol. 52, No. 4 (2012) DOI: 10.2478/v10045-012-0068-6
  • Damalas C. A. and I. G. Eleftherohorinos, 2011. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J Environ Res Public Health. 2011 May; 8(5): 1402–1419. doi: 10.3390/ijerph8051402
  • Delormes P., 2009. Habitat Protection from Pesticide Spray Drift: The Canadian Approach. Report of the Seminar on Pesticide Risk Reduction through Spray Drift Reduction Strategies as Part of National Risk Management. OECD Environment, Health and Safety Publications Series on Pesticides No. 46. Pp. 26-33.
  • Derksen, R. C., H. E. Ozkan, R. D. Fox and R. D. Brazee, 1997. Effectiveness of TurboDrop and Turbo TeeJet nozzles in drift reduction. ASAE Paper No. 971070, ASAE, 2950 Niles Road, St. Joseph, MI 49085.
  • Grisso, R., P. Hipkins, S. D. Askew, L. Hipkins, D. Mccall, 2013. Nozzles: Selection and Sizing. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University. Publication 442-032. https://pubs.ext.vt.edu/442/442-032/442-032_pdf.pdf
  • Gordon B., 2017. Spray Application Manual for Grain Growers. Grain Research and Development Corporation Grow Notes, pp 22.
  • Guler, H., H. Zhu, H. E. Ozkan, R. C. Derksen, Y. Yu, and C. R. Krause. 2007. Spray characteristics and drift reduction potential with air induction and conventional flat‐fan nozzles. Trans. ASABE 50(3): 745‐754.
  • Harasta P., 2009. Drift Reduction Possibilities in the Czech Republic. Report of the Seminar on Pesticide Risk Reduction through Spray Drift Reduction Strategies as Part of National Risk Management. OECD Environment, Health and Safety Publications Series on Pesticides No. 46. Pp. 43-48.
  • Immig J., 2009. The Threat of Pesticide Spray Drift. A Community Information and Action Kit Johnson M. P. and L. D. Swetnam, 2000. Sprayer Nozzles: Selection and Calibration. University of Kentucky Cooperative Extension Service. PAT-3.
  • Matthews G.A, 2000. Pesticide Application Methods. Blackwell Sciences. ISBN 0-632-05473-5. p. 431 Nuyttens D., M. De Schampheleire, P. Verboven, E. Brusselman, D. Dekeyser, 2009. Droplet Size and Velocity Characteristics of Agricultural Sprays. Transactions of the ASABE Vol. 52(5): 1471-1480, American Society of Agricultural and Biological Engineers ISSN 0001-2351. Pp. 1471-1480.
  • Nuyttens D., Baetens K., Schampheleire M. De, Sonck B., 2006. PDPA Laser Based Characterization of Agricultural Sprays. Agricultural Engineering International: the CIGR Ejournal. Manuscript PM 06 024. Vol. VIII. December, 2006. Petersen D., 2014. WA Weed Conference – Crop Session. Pp. 4
  • Schick R. J., 1997. General Guidelines on Drop Size Measurement Techniques and Terminology. As presented at the 47th Chemical Processing Industry Exposition, Javits Convention Center, New York, November 1997.
  • Urkan, E., (2012). Farklı Tip Memelerle Bağ İlaçlamasında Pülverizatör Performansının ve Sürüklenmenin Belirlenmesi, (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Bornova-İzmir (Yayınlanmamış). Wilson J., J. Nowatzki, V. Hofman, 2008. Selecting Drift-Reducing Nozzles. South Dakota Cooperative Extension Service. FS 919 Rev. 6/08
  • Wolf R.E. and S. Brettbauer, 2009. Droplet Size Calibration: A New Approach to Effective Spraying. Kansas State University Agricultural Experiment Station and Cooperative Extension Service.
  • Zande, J. van de, H. A. J. Porskamp, H. J. Holterman, 2002. Influence of Reference Nozzle Choice on Spray Drift Classification. Aspects Appl. Biol., Intl. Adv. Pest. Appl. 66: 49‐55.

Details

Subjects Science
Journal Section Articles
Authors

Erkan URKAN
Türkiye


Hüseyin GÜLER
Türkiye

Publication Date December 26, 2017
Published in Issue Year 2017, Volume 13, Issue 2

Cite

APA Urkan, E. & Güler, H. (2017). Determining the Droplet Size Classification of Hollow Cone Nozzles with Droplet Image Analysis . Tarım Makinaları Bilimi Dergisi , 13 (2) , 121-126 . Retrieved from https://dergipark.org.tr/en/pub/tarmak/issue/34002/376451

Journal of Agricultural Machinery Science is a refereed scientific journal published by the Agricultural Machinery Association as 3 issues a year.