Research Article
BibTex RIS Cite

Farklı Dalga Boylu LED Işıklarının Yeşil Yapraklı Bitkilerin Gelişimi Üzerindeki Etkileri

Year 2018, Volume: 14 Issue: 2, 105 - 114, 31.12.2018

Abstract

Işık yayan diyot (LED:
Light Emitting Diode
) teknolojisinin yeni tip yarı iletken malzemelerin
ortaya çıkmasıyla sürekli şekilde gelişmesi, aydınlatmanın bitki büyümesi ve
gelişimi de dahil olmak üzere giderek artan sayıda yeni alanlarda uygulanmasını
mümkün kılmıştır. Son yıllarda, geleneksel aydınlatma sistemlerine alternatif
olarak, LED'in bitki morfogenezi için mükemmel bir yapay akıllı aydınlatma
kaynağı olduğu kanıtlanmıştır. LED aydınlatma çiçekler, sebzeler, meyveler,
aşılanmış fideler, mikro yeşillikler, algler, tıbbi ve aromatik vb. bitkilerin
üretilmesinde kullanılmakta ve önemli faydalar sunmaktadır. LED aydınlatma
teknolojisi, bitkisel üretimde verimliliği artırabilecek farklı dalga boylu
ışık kontrollü bir büyüme ortamı sağlayabilir. Ayrıca, yeni LED teknolojileri
sadece bitki üretimindeki verim ve kaliteyi arttırmakla kalmaz, aynı zamanda
bitkinin fizyolojik tepkilerini anlamaya yönelik yeni araştırmalara da olanak
tanır. Bu nedenle, çeşitli bitki büyüme ve geliştirme uygulamaları için LED
ışığının yeni kontrol seviyeleri araştırılmakta, ışığın değeri artırılmakta,
diğer yandan LED aydınlatma ürünlerinin maliyeti azalmaya devam etmektedir.
Yapılandırılabilir LED aydınlatma artık nispeten ucuzdur ve dünyanın dört bir
yanındaki araştırmacıların kayda değer deneyler yapmasına ve bu önemli konu
için bilgi literatürüne katkıda bulunmasına olanak tanır.
Bu
çalışmada farklı dalga boylu LED ışıklarının spektral özellikleri açıklanmış, marul
ve bazı mikro yeşillikler üzerindeki bazı araştırma sonuçlarına yer verilmiştir
.

References

  • Anderson, J. M., W. S. Chow, Y. I. Park, 1995. The Grand Design Of Photosynthesis: Acclimation Of The Photosynthetic Apparatus To Environmental Cues. Photosynth Res 46:129–139.
  • Bian, Z. H., R. F. Cheng, Q. C. Yang, J. Wang, 2016. Continuous Light From Red, Blue, And Green Light-Emitting Diodes Reduces Nitrate Content And Enhances Phytochemical Concentrations And Antioxidant Capacity In Lettuce. J Amer Soc Hort Sci 141:186–195.
  • Bliznikas, Z., A. Žukauskas, G. Samuolienė, A. Viršilė, A. Brazaitytė, J. Jankauskienė, P. Duchovskis, A. Novičkovas, 2012. Effect Of Supplementary Pre-Harvest Led Lighting On The Antioxidant And Nutritional Properties Of Green Vegetables. Acta Hortic 939:85–91.
  • Brazaitytė, A., R. Ulinskaitė, P. Duchovskis, G. Samuolienė, J. B. Šikšnianienė, G. Šabajevienė, K. Baranauskis, G. Stanienė, G. Tamulaitis, Z. Bliznikas, A. Žukauskas, 2006. Optimization Of Lighting Spectrum For Photosynthetic System And Productivity Of Lettuce By Using Light-Emitting Diodes. Acta Hortic 711:183–188.
  • Briggs, W. R., J. M. Christie, 2002. Phototropins 1 And 2: Versatile Plant Blue Light Receptors. Trends Plant Sci 7(5):204–210.
  • Bugbee, B., 2016. Towards An Optimal Spectral Quality For Plant Growth And Development: The Importance Of Radiation Capture. Acta Hortic 1134:1–12.
  • Carvalho, S. D., K. M. Folta, 2014. Environmentally Modified Organisms—Expanding Genetic Potential With Light. Crit Rev in Plant Sci 33:486–508.
  • Carvalho, S. D., M. L. Schwieterman, C. E. Abrahan, T. A. Colquhoun, K. M. Folta, 2016. Light Quality Dependent Changes In Morphology, Antioxidant Capacity, And Volatile Production In Sweet Basil (Ocimum basilicum). Front Plant Sci 7:1328.
  • Cashmore, A. R., J. A. Jarillo, Y. J. Wu, D. Liu, 1999. Cryptochromes: Blue Light Receptors For Plants And Animals. Science 284(5415):760–765.
  • Chang, C. L., K. P. Chang, 2014. The Growth Response Of Leaf Lettuce At Different Stages To Multiple Wavelength-Band Light-Emitting Diode Lighting. Sci Hortic 179:78–84.
  • Chen, X. L., X. Z. Xu, W. Z. Guo, L. C. Wang, X. J. Qiao, 2016. Growth And Nutritional Properties Of Lettuce Affected By Mixed Irradiation Of White And Supplemental Light Provided By Light-Emitting Diode. Sci Hort 200:111–118.
  • Colonna, E., Y. Rouphael, G. Barbieri, 2016. Nutritional Quality Of Ten Leafy Vegetables Harvested At Two Light Intensities. Food Chem 199:702–710.
  • Demotes-Mainard, S., T. Peron, A. Corot, 2016. Plant Responses To Red And Far Red Lights, Applications In Horticulture. Eviron Exp Bot 121:4–21.
  • Folta, K., S. A. Maruhnich, 2007. Green Light: A Signal To Slow Down Or Stop. J Exp Bot 58:3099–3111.
  • Goins, G. D., L. M. Ruffe, N. A. Cranston, N. C. Yorio, R. M. Wheeler, J. C. Sager, 2001. Salad Crop Production Under Different Wavelengths Of Red Light-Emitting Diodes (leds). Sae technical paper. In: 31st international conference on environmental systems, 9–12 July 2001, Orlando, FL, USA, pp 1–9.
  • Goto, E., K. Hayashi, S. Furuyama, S. Hikosaka, Y. Ishigami, 2016. Effect Of Uv Light On Phytochemical Accumulation And Expression Of Anthocyanin Biosynthesis Genes In Red Leaf Lettuce. Acta Hortic. 1134:179–185.
  • Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, J. Harbinson, 2010. Blue Light Dose–Responses Of Leaf Photosynthesis, Morphology, And Chemical Composition Of Cucumis Sativus Grown Under Different Combinations Of Red And Blue Light. J Exp Bot 61:3107–3117.
  • Johkan, M., K. Shoji, F. Goto, S. Hashida, T. Yoshihara, 2010. Blue Light-Emitting Diode Light Irradiation Of Seedlings Improves Seedling Quality And Growth After Transplanting In Red Leaf Lettuce. HortScience 45:1809–1814.
  • Johkan, M., K. Shoji, F. Goto, S. Hashida, T. Yoshihara, 2012. Effect Of Green Light Wavelength And Intensity On Photomorphogenesis And Photosynthesis In Lactuca Sativa. Environ Exp Bot 75:128–133.
  • Kubota, C., P. Chia, Q. Yang Li, 2012. Applications Of Far-Red Light Emitting Diodes In Plant Production Under Controlled Environments. Acta Hortic. 952:59–66.
  • Lee, M. J., S. Y. Park, M. M. Oh, 2015. Growth And Cell Division Of Lettuce Plants Under Various Ratios Of Red To Far-Red Light-Emitting Didoes. Hortic. Environ Biote 56:188–194.
  • Lee, M. J., K. H. Son, M. M. Oh, 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote 57:139–147.
  • Lefsrud, M. G., D. A. Kopsell, C. E. Sams, 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244
  • Li, Q., C. Kubota, 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64.
  • Li, H., C. Tang, Z. Xu, X. Liu, X. Han, 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agr Sci 4:262–273.
  • Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang, C. M. Yang, 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort 150:86–91.
  • Massa, G., T. Graham, T. Haire, C. Flemming II., G. Newsham, R. Wheeler, 2015. Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 50:501–506.
  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, K. Kurata, 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia olearacea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465.
  • McCree, K. J., 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216. Mizuno, T., W. Amaki, H. Watanabe, 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic 907:179–184.
  • Mou, B., 2012. Nutritional quality of lettuce. Curr Nutr Food Sci 8(3):177–187.
  • Naznin, M. T., M. Lefsrud, V. Gravel, X. Hao, 2016. Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Hortic 1134:223–229.
  • Nicole, C. C. S., F. Charalambous, S. Martinakos, S. van de Voort, Z. Li, M. Verhoog, M. Krijn, 2016. Lettuce growth and quality optimization in a plant factory. Acta Hortic 1134:231–238.
  • Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, K. Kurata, 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189–198.
  • Olle, M., A. Viršilė, 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agr. Food Sci 22:223–234. Osram Opto, S., 2016. Solutions for Horticulture Lighting. http://ledapplicatie.nl/wp-content/uploads/sites/32/2016/06/6.final-Horticulture-Lighting-led-evenement brandes.pdf. Erişim: Mayıs 2018.
  • Ouzounis, T., B. Razi Parjikolaei, X. Fretté, E. Rosenqvist, C. O. Ottosen, 2015a Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci 6:19.
  • Ouzounis, T., E. Rosenqvist, K. Ottosen, 2015b. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50:1128–1135.
  • Owen, W. G., R. Lopez, 2015. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience 50:676–684.
  • Pinho, P., K. Jokinen, L. Halonen, 2016. The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Lighting Res Technol.
  • e modulation of specialty crops: light sensing and signaling networks in plants. HortScience 50:1281–1284.
  • Samuolienė, G, A. Urbonavičiūtė, P. Duchovskis, Z. Bliznikas, P. Vitta, A. Žukauskas, 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience 44:1857–1860.
  • Samuolienė, G., A. Brazaitytė, P. Duchovskis, A. Viršilė, J. Jankauskienė, R. Sirtautas, A. Novičkovas, S. Skalauskienė, J. Sakalauskaitė, 2012a. Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic 952:885–892.
  • Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Novičkovas, P. Duchovskis, 2012b. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic 952:835–841.
  • Samuolienė, G., R. Sirtautas, A. Brazaitytė, A. Viršilė, P. Duchovskis, 2012c. Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:7001–7706.
  • Samuolienė, G., R. Sirtautas, A. Brazaitytė, P. Duchovskis, 2012d. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134:1494–1499.
  • Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Viršilė, J. Sakalauskaitė, S. Sakalauskienė, P. Duchovskis, 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286–3291.
  • Sancar, A., 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103(6):2203–2238. Shinomura, T., K. Uchida, M. Furuya, 2000. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol 122(1):147–156.
  • Smith, H., 1995. Physiological and ecological function within the phytochrome family. Annu Rev Plant Biol 46:289–315
  • Snowden, M. C., K. R. Cope, B. Bugbee, 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS ONE 11(10):e0163121.
  • Son, K. H., M. M. Oh, 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995.
  • Son, K. H., M. M. Oh, 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biote 56:639–653.
  • Spalding, E. P., K. M. Folta, 2005. Illuminating topics in plant photobiology. Plant, Cell Environ 28:39–53.
  • Stutte, G. W., S. Edney, T. Skerritt, 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82.
  • Tarakanov, I., O. Yakovleva, I. Konovalova, G. Paliutina, A. Anisimov, 2012. Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hortic 956:171–178.
  • Taulavuori, K., V. Hyöky, L. Oksanen, E. Taulavuori, R. Julkunen-Tiitto, 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ Exp Bot 121:145–150.
  • Viršilė, A., M. Olle ve P. Duchovskis, 2017. LED Lighting in Horticulture, Chap. 7, pp. 113-161. In: Light Emitting Diodes for Agriculture (Smart Lighting). S. Dutta Gupta (ed.), Springer Nature Singapore Pte Ltd.
  • Wanlai, Z., L. Wenke, Y. Qichang, 2013. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light emitting diodes. J Plant Nutr 36:491–490.
  • Wargent, J. J., 2016. UV LEDs in horticulture: from biology to application. Acta Hortic 1134:25–32
  • Wojciechowska, R., O. Długosz-Grochowska, A. Kołton, M. Župnik, 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic 187:80–86.
  • Wojciechowska, R., A. Kołton, O. Długosz-Grochowska, E. Knop, 2016. Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci Hortic 211:179–186.
  • Xin, J., H. Liu, S. Song, R. Chen, G. Sun, 2015. Growth and quality of Chinese kale grown under different LEDs. Agric Sci Technol 16:68–69.
  • Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, J. C. Sager, 2001. Improving spinach, radish and lettuce growth under red light emitting didoes (LEDs) with blue light supplementation. HortScience 36:380–383.
  • Žukauskas, A., Z. Bliznikas, K. Breivė, A. Novičkovas, G. Samuolienė, A. Urbonavičiūtė, A. Brazaitytė, J. Jankauskienė, P. Duchovskis, 2011. Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. Acta Hortic 907:87–90.
Year 2018, Volume: 14 Issue: 2, 105 - 114, 31.12.2018

Abstract

References

  • Anderson, J. M., W. S. Chow, Y. I. Park, 1995. The Grand Design Of Photosynthesis: Acclimation Of The Photosynthetic Apparatus To Environmental Cues. Photosynth Res 46:129–139.
  • Bian, Z. H., R. F. Cheng, Q. C. Yang, J. Wang, 2016. Continuous Light From Red, Blue, And Green Light-Emitting Diodes Reduces Nitrate Content And Enhances Phytochemical Concentrations And Antioxidant Capacity In Lettuce. J Amer Soc Hort Sci 141:186–195.
  • Bliznikas, Z., A. Žukauskas, G. Samuolienė, A. Viršilė, A. Brazaitytė, J. Jankauskienė, P. Duchovskis, A. Novičkovas, 2012. Effect Of Supplementary Pre-Harvest Led Lighting On The Antioxidant And Nutritional Properties Of Green Vegetables. Acta Hortic 939:85–91.
  • Brazaitytė, A., R. Ulinskaitė, P. Duchovskis, G. Samuolienė, J. B. Šikšnianienė, G. Šabajevienė, K. Baranauskis, G. Stanienė, G. Tamulaitis, Z. Bliznikas, A. Žukauskas, 2006. Optimization Of Lighting Spectrum For Photosynthetic System And Productivity Of Lettuce By Using Light-Emitting Diodes. Acta Hortic 711:183–188.
  • Briggs, W. R., J. M. Christie, 2002. Phototropins 1 And 2: Versatile Plant Blue Light Receptors. Trends Plant Sci 7(5):204–210.
  • Bugbee, B., 2016. Towards An Optimal Spectral Quality For Plant Growth And Development: The Importance Of Radiation Capture. Acta Hortic 1134:1–12.
  • Carvalho, S. D., K. M. Folta, 2014. Environmentally Modified Organisms—Expanding Genetic Potential With Light. Crit Rev in Plant Sci 33:486–508.
  • Carvalho, S. D., M. L. Schwieterman, C. E. Abrahan, T. A. Colquhoun, K. M. Folta, 2016. Light Quality Dependent Changes In Morphology, Antioxidant Capacity, And Volatile Production In Sweet Basil (Ocimum basilicum). Front Plant Sci 7:1328.
  • Cashmore, A. R., J. A. Jarillo, Y. J. Wu, D. Liu, 1999. Cryptochromes: Blue Light Receptors For Plants And Animals. Science 284(5415):760–765.
  • Chang, C. L., K. P. Chang, 2014. The Growth Response Of Leaf Lettuce At Different Stages To Multiple Wavelength-Band Light-Emitting Diode Lighting. Sci Hortic 179:78–84.
  • Chen, X. L., X. Z. Xu, W. Z. Guo, L. C. Wang, X. J. Qiao, 2016. Growth And Nutritional Properties Of Lettuce Affected By Mixed Irradiation Of White And Supplemental Light Provided By Light-Emitting Diode. Sci Hort 200:111–118.
  • Colonna, E., Y. Rouphael, G. Barbieri, 2016. Nutritional Quality Of Ten Leafy Vegetables Harvested At Two Light Intensities. Food Chem 199:702–710.
  • Demotes-Mainard, S., T. Peron, A. Corot, 2016. Plant Responses To Red And Far Red Lights, Applications In Horticulture. Eviron Exp Bot 121:4–21.
  • Folta, K., S. A. Maruhnich, 2007. Green Light: A Signal To Slow Down Or Stop. J Exp Bot 58:3099–3111.
  • Goins, G. D., L. M. Ruffe, N. A. Cranston, N. C. Yorio, R. M. Wheeler, J. C. Sager, 2001. Salad Crop Production Under Different Wavelengths Of Red Light-Emitting Diodes (leds). Sae technical paper. In: 31st international conference on environmental systems, 9–12 July 2001, Orlando, FL, USA, pp 1–9.
  • Goto, E., K. Hayashi, S. Furuyama, S. Hikosaka, Y. Ishigami, 2016. Effect Of Uv Light On Phytochemical Accumulation And Expression Of Anthocyanin Biosynthesis Genes In Red Leaf Lettuce. Acta Hortic. 1134:179–185.
  • Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, J. Harbinson, 2010. Blue Light Dose–Responses Of Leaf Photosynthesis, Morphology, And Chemical Composition Of Cucumis Sativus Grown Under Different Combinations Of Red And Blue Light. J Exp Bot 61:3107–3117.
  • Johkan, M., K. Shoji, F. Goto, S. Hashida, T. Yoshihara, 2010. Blue Light-Emitting Diode Light Irradiation Of Seedlings Improves Seedling Quality And Growth After Transplanting In Red Leaf Lettuce. HortScience 45:1809–1814.
  • Johkan, M., K. Shoji, F. Goto, S. Hashida, T. Yoshihara, 2012. Effect Of Green Light Wavelength And Intensity On Photomorphogenesis And Photosynthesis In Lactuca Sativa. Environ Exp Bot 75:128–133.
  • Kubota, C., P. Chia, Q. Yang Li, 2012. Applications Of Far-Red Light Emitting Diodes In Plant Production Under Controlled Environments. Acta Hortic. 952:59–66.
  • Lee, M. J., S. Y. Park, M. M. Oh, 2015. Growth And Cell Division Of Lettuce Plants Under Various Ratios Of Red To Far-Red Light-Emitting Didoes. Hortic. Environ Biote 56:188–194.
  • Lee, M. J., K. H. Son, M. M. Oh, 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote 57:139–147.
  • Lefsrud, M. G., D. A. Kopsell, C. E. Sams, 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244
  • Li, Q., C. Kubota, 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64.
  • Li, H., C. Tang, Z. Xu, X. Liu, X. Han, 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agr Sci 4:262–273.
  • Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang, C. M. Yang, 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort 150:86–91.
  • Massa, G., T. Graham, T. Haire, C. Flemming II., G. Newsham, R. Wheeler, 2015. Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 50:501–506.
  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, K. Kurata, 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia olearacea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465.
  • McCree, K. J., 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216. Mizuno, T., W. Amaki, H. Watanabe, 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic 907:179–184.
  • Mou, B., 2012. Nutritional quality of lettuce. Curr Nutr Food Sci 8(3):177–187.
  • Naznin, M. T., M. Lefsrud, V. Gravel, X. Hao, 2016. Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Hortic 1134:223–229.
  • Nicole, C. C. S., F. Charalambous, S. Martinakos, S. van de Voort, Z. Li, M. Verhoog, M. Krijn, 2016. Lettuce growth and quality optimization in a plant factory. Acta Hortic 1134:231–238.
  • Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, K. Kurata, 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189–198.
  • Olle, M., A. Viršilė, 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agr. Food Sci 22:223–234. Osram Opto, S., 2016. Solutions for Horticulture Lighting. http://ledapplicatie.nl/wp-content/uploads/sites/32/2016/06/6.final-Horticulture-Lighting-led-evenement brandes.pdf. Erişim: Mayıs 2018.
  • Ouzounis, T., B. Razi Parjikolaei, X. Fretté, E. Rosenqvist, C. O. Ottosen, 2015a Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci 6:19.
  • Ouzounis, T., E. Rosenqvist, K. Ottosen, 2015b. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50:1128–1135.
  • Owen, W. G., R. Lopez, 2015. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience 50:676–684.
  • Pinho, P., K. Jokinen, L. Halonen, 2016. The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Lighting Res Technol.
  • e modulation of specialty crops: light sensing and signaling networks in plants. HortScience 50:1281–1284.
  • Samuolienė, G, A. Urbonavičiūtė, P. Duchovskis, Z. Bliznikas, P. Vitta, A. Žukauskas, 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience 44:1857–1860.
  • Samuolienė, G., A. Brazaitytė, P. Duchovskis, A. Viršilė, J. Jankauskienė, R. Sirtautas, A. Novičkovas, S. Skalauskienė, J. Sakalauskaitė, 2012a. Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic 952:885–892.
  • Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Novičkovas, P. Duchovskis, 2012b. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic 952:835–841.
  • Samuolienė, G., R. Sirtautas, A. Brazaitytė, A. Viršilė, P. Duchovskis, 2012c. Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:7001–7706.
  • Samuolienė, G., R. Sirtautas, A. Brazaitytė, P. Duchovskis, 2012d. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134:1494–1499.
  • Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Viršilė, J. Sakalauskaitė, S. Sakalauskienė, P. Duchovskis, 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286–3291.
  • Sancar, A., 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103(6):2203–2238. Shinomura, T., K. Uchida, M. Furuya, 2000. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol 122(1):147–156.
  • Smith, H., 1995. Physiological and ecological function within the phytochrome family. Annu Rev Plant Biol 46:289–315
  • Snowden, M. C., K. R. Cope, B. Bugbee, 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS ONE 11(10):e0163121.
  • Son, K. H., M. M. Oh, 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995.
  • Son, K. H., M. M. Oh, 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biote 56:639–653.
  • Spalding, E. P., K. M. Folta, 2005. Illuminating topics in plant photobiology. Plant, Cell Environ 28:39–53.
  • Stutte, G. W., S. Edney, T. Skerritt, 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82.
  • Tarakanov, I., O. Yakovleva, I. Konovalova, G. Paliutina, A. Anisimov, 2012. Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hortic 956:171–178.
  • Taulavuori, K., V. Hyöky, L. Oksanen, E. Taulavuori, R. Julkunen-Tiitto, 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ Exp Bot 121:145–150.
  • Viršilė, A., M. Olle ve P. Duchovskis, 2017. LED Lighting in Horticulture, Chap. 7, pp. 113-161. In: Light Emitting Diodes for Agriculture (Smart Lighting). S. Dutta Gupta (ed.), Springer Nature Singapore Pte Ltd.
  • Wanlai, Z., L. Wenke, Y. Qichang, 2013. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light emitting diodes. J Plant Nutr 36:491–490.
  • Wargent, J. J., 2016. UV LEDs in horticulture: from biology to application. Acta Hortic 1134:25–32
  • Wojciechowska, R., O. Długosz-Grochowska, A. Kołton, M. Župnik, 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic 187:80–86.
  • Wojciechowska, R., A. Kołton, O. Długosz-Grochowska, E. Knop, 2016. Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci Hortic 211:179–186.
  • Xin, J., H. Liu, S. Song, R. Chen, G. Sun, 2015. Growth and quality of Chinese kale grown under different LEDs. Agric Sci Technol 16:68–69.
  • Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, J. C. Sager, 2001. Improving spinach, radish and lettuce growth under red light emitting didoes (LEDs) with blue light supplementation. HortScience 36:380–383.
  • Žukauskas, A., Z. Bliznikas, K. Breivė, A. Novičkovas, G. Samuolienė, A. Urbonavičiūtė, A. Brazaitytė, J. Jankauskienė, P. Duchovskis, 2011. Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. Acta Hortic 907:87–90.
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Nuri Çağlayan

Can Ertekin This is me

Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 14 Issue: 2

Cite

APA Çağlayan, N., & Ertekin, C. (2018). Farklı Dalga Boylu LED Işıklarının Yeşil Yapraklı Bitkilerin Gelişimi Üzerindeki Etkileri. Tarım Makinaları Bilimi Dergisi, 14(2), 105-114.

Journal of Agricultural Machinery Science is a refereed scientific journal published by the Agricultural Machinery Association as 3 issues a year.