Biomass Energy Potential from Agricultural Production in Libya
Year 2024,
Volume: 20 Issue: 2, 61 - 71, 29.08.2024
Mohamedeltayib Omer Salih Eissa
,
Gürkan A. K. Gürdil
,
Laith Ghanem
,
Bahadır Demirel
Abstract
The purpose of this study is to assess the potential for agricultural residues in Libya in terms of type and quantity. Some of the biomass resources in Libya include agricultural residues, such as crop residues and animal manure, as well as organic waste from industries and municipalities. Using production data from the Food and Agriculture Organization Statistical Databases of the United Nations (FAOSTAT) for the 2021 seasonal year, the amounts of crops grown in Libya measured in tons of dry matter annually, were computed and the residue to product ratio was used to calculate the annual gross potential of agricultural residues. The calorific values of agricultural residues were multiplied by the amount of residue that was available to determine the energy potential of crop residues. Roughly 4.5 kilo tons of agricultural crop waste were left over after harvest. It was discovered that for Libya's production season of 2021, the total calorific value of agricultural residue was around 17.7 TJ. Major crops that are included in the ratio of the total residue amount are potatoes (40.33%), wheat (33.9%), barely (22.5%), and maize (1.9%). This paper gives an overview of the agricultural waste that can be used in Libya as a source of biomass energy, utilizing waste as a feedstock lowers the pollution that comes from burning fossil fuels to produce energy.
References
- Aktaş, T. (2022). Tarım Makinaları Bilimi Dergisi Türkiye ’ de İmal Edilen Odun Pelet Örneklerinin Kalite Özelliklerinin ve Standartlara Uygunluğunun Belirlenmesi Tarım Makinaları Bilimi Dergisi, 18(1), 25-40.
- Demirel, B., Gürdil, G.A.K., Gadalla, O. (2019). Biomass energy potential from agricultural production in Sudan. Erciyes Tarım ve Hayvan Bilimleri Dergisi ETHABD, 2(2), 35–38.
- Elmnifi, M., Omran, A., Almosmary, M., & Rahel, R. G. (2023). Biofuel Production from Animal Waste in Northeastern of Libya: Experimental and Simulation Investigations. Journal of Environmental Management and Tourism, 14(1), 67–81. https://doi.org/10.14505/jemt.v14.1(65).07
- FAOSTAT. (n.d.). ( 2023, November 13)Retrieved, from https://www.fao.org/faostat/en/#data/QCL
- FAO. (2019). GIEWS Country Brief Zambia. Glogbal Watch GIEWS, September-20, 2.
- FAO GIEWS Country Brief on Libya -. (n.d.). (2023, October 19)Retrieved, from https://www.fao.org/giews/countrybrief/country.jsp?code=LBY
- Hamad, T. A., Agll, A. A., Hamad, Y. M., & Sheffield, J. W. (2014). Solid waste as renewable source of energy: Current and future possibility in Libya. Case Studies in Thermal Engineering, 4, 144–152. https://doi.org/10.1016/j.csite.2014.09.004
- Karaca, C. (2015). Mapping of energy potential through annual crop residues in Turkey. International Journal of Agricultural and Biological Engineering, 8(2), 104–109. https://doi.org/10.3965/j.ijabe.20150802.1587
- Karaca, C. (2017). Determining and mapping agricultural biomass energy potential in Samsun Province of Turkey. ICOEST 3rd International Conference on Environmental Science and Technology, October, 190–194.
- https://www.researchgate.net/publication/322118421_Determining_and_mapping_agricultural_biomass_energy_potential_in_Samsun_Province_of_Turkey
- Karaca, C., Kağan Gürdil, G. A., & Ozturk, H. H. (2017). The Biomass Energy Potential from Agricultural Production in the Black Sea Region of Turkey. ICOEST 3rd International Conference on Environmental Science and Technology, October.
- https://www.researchgate.net/publication/322118189_The_Biomass_Energy_Potential_from_Agricultural_Production_in_the_Black_Sea_Region_of_Turkey
- Libya Population - Worldometer. (n.d.). (2023, October 18)Retrieved, from https://www.worldometers.info/world-population/libya-population/
- Malaťák, J., Gendek, A., Aniszewska, M., & Velebil, J. (2020). Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel, 276(April). https://doi.org/10.1016/j.fuel.2020.118001
- Mohamed, A. M. A., Al-habaibeh, A., & Abdo, H. (2013). An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya. Renewable Energy, 50, 732–740. https://doi.org/10.1016/j.renene.2012.07.038
- population of Libya - Google Search. (n.d.). (2023, October 18)Retrieved, from https://www.google.com/search?q=population+of+Liyba
- Tamelová, B., Malaťák, J., Velebil, J., Gendek, A., & Aniszewska, M. (2021). Energy utilization of torrefied residue from wine production. Materials, 14(7). https://doi.org/10.3390/ma14071610
- Yahya, W., Nassar, A., Mansur, F. A., Al-nehari, M., & Alnakhlani, M. M. (2020). Future Study of Renewable Energy in Libya. 6495(10), 1–6.
- Zurqani, H. A., Mikhailova, E. A., Post, C. J., Schlautman, M. A., & Elhawej, A. R. (2019). A review of Libyan soil databases for use within an ecosystem services framework. Land, 8(5). https://doi.org/10.3390/land8050082
Libya'da Tarımsal Üretimden Biyokütle Enerjisi Potansiyeli
Year 2024,
Volume: 20 Issue: 2, 61 - 71, 29.08.2024
Mohamedeltayib Omer Salih Eissa
,
Gürkan A. K. Gürdil
,
Laith Ghanem
,
Bahadır Demirel
Abstract
Bu çalışmanın amacı, Libya'da tarımsal atıkların türü ve miktarı açısından potansiyelini değerlendirmektir. Libya'daki biyokütle kaynaklarından bazıları tarımsal atıklar, örneğin mahsul artıkları ve hayvan gübresi, ayrıca endüstrilerden ve belediyelerden organik atıklardır. Birleşmiş Milletler Gıda ve Tarım Örgütü İstatistik Veritabanları'ndan (FAOSTAT) 2021 mevsimsel yılı için üretim verileri kullanılarak, Libya'da yetiştirilen mahsullerin ton cinsinden yıllık kuru madde miktarı hesaplandı ve artık ürün oranı kullanılarak tarımsal atıkların yıllık brüt potansiyeli hesaplandı. Tarımsal atıkların ısısal değerleri, kullanılabilir artık miktarıyla çarpılarak mahsul artıklarının enerji potansiyeli belirlendi. Hasattan sonra yaklaşık olarak 4.5 kiloton tarımsal mahsul atığı kaldığı bulundu. Libya'nın 2021 üretim mevsimi için tarımsal atığın toplam ısıl değerinin yaklaşık 17.7 TJ olduğu keşfedildi. Toplam atık miktarı oranına dahil olan başlıca mahsuller patates (%40.33), buğday (%33.9), arpa (%22.5) ve mısırdır (%1.9). Bu makale, Libya'da biyokütle enerjisi kaynağı olarak kullanılabilecek tarımsal atıkların genel bir değerlendirmesini sunar, atıkları bir ham madde olarak kullanmak, enerji üretmek için fosil yakıtların yakılmasından kaynaklanan kirliliği azaltır.
References
- Aktaş, T. (2022). Tarım Makinaları Bilimi Dergisi Türkiye ’ de İmal Edilen Odun Pelet Örneklerinin Kalite Özelliklerinin ve Standartlara Uygunluğunun Belirlenmesi Tarım Makinaları Bilimi Dergisi, 18(1), 25-40.
- Demirel, B., Gürdil, G.A.K., Gadalla, O. (2019). Biomass energy potential from agricultural production in Sudan. Erciyes Tarım ve Hayvan Bilimleri Dergisi ETHABD, 2(2), 35–38.
- Elmnifi, M., Omran, A., Almosmary, M., & Rahel, R. G. (2023). Biofuel Production from Animal Waste in Northeastern of Libya: Experimental and Simulation Investigations. Journal of Environmental Management and Tourism, 14(1), 67–81. https://doi.org/10.14505/jemt.v14.1(65).07
- FAOSTAT. (n.d.). ( 2023, November 13)Retrieved, from https://www.fao.org/faostat/en/#data/QCL
- FAO. (2019). GIEWS Country Brief Zambia. Glogbal Watch GIEWS, September-20, 2.
- FAO GIEWS Country Brief on Libya -. (n.d.). (2023, October 19)Retrieved, from https://www.fao.org/giews/countrybrief/country.jsp?code=LBY
- Hamad, T. A., Agll, A. A., Hamad, Y. M., & Sheffield, J. W. (2014). Solid waste as renewable source of energy: Current and future possibility in Libya. Case Studies in Thermal Engineering, 4, 144–152. https://doi.org/10.1016/j.csite.2014.09.004
- Karaca, C. (2015). Mapping of energy potential through annual crop residues in Turkey. International Journal of Agricultural and Biological Engineering, 8(2), 104–109. https://doi.org/10.3965/j.ijabe.20150802.1587
- Karaca, C. (2017). Determining and mapping agricultural biomass energy potential in Samsun Province of Turkey. ICOEST 3rd International Conference on Environmental Science and Technology, October, 190–194.
- https://www.researchgate.net/publication/322118421_Determining_and_mapping_agricultural_biomass_energy_potential_in_Samsun_Province_of_Turkey
- Karaca, C., Kağan Gürdil, G. A., & Ozturk, H. H. (2017). The Biomass Energy Potential from Agricultural Production in the Black Sea Region of Turkey. ICOEST 3rd International Conference on Environmental Science and Technology, October.
- https://www.researchgate.net/publication/322118189_The_Biomass_Energy_Potential_from_Agricultural_Production_in_the_Black_Sea_Region_of_Turkey
- Libya Population - Worldometer. (n.d.). (2023, October 18)Retrieved, from https://www.worldometers.info/world-population/libya-population/
- Malaťák, J., Gendek, A., Aniszewska, M., & Velebil, J. (2020). Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel, 276(April). https://doi.org/10.1016/j.fuel.2020.118001
- Mohamed, A. M. A., Al-habaibeh, A., & Abdo, H. (2013). An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya. Renewable Energy, 50, 732–740. https://doi.org/10.1016/j.renene.2012.07.038
- population of Libya - Google Search. (n.d.). (2023, October 18)Retrieved, from https://www.google.com/search?q=population+of+Liyba
- Tamelová, B., Malaťák, J., Velebil, J., Gendek, A., & Aniszewska, M. (2021). Energy utilization of torrefied residue from wine production. Materials, 14(7). https://doi.org/10.3390/ma14071610
- Yahya, W., Nassar, A., Mansur, F. A., Al-nehari, M., & Alnakhlani, M. M. (2020). Future Study of Renewable Energy in Libya. 6495(10), 1–6.
- Zurqani, H. A., Mikhailova, E. A., Post, C. J., Schlautman, M. A., & Elhawej, A. R. (2019). A review of Libyan soil databases for use within an ecosystem services framework. Land, 8(5). https://doi.org/10.3390/land8050082