Research Article
BibTex RIS Cite

Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study

Year 2021, , 35 - 45, 15.12.2021
https://doi.org/10.33435/tcandtc.1018412

Abstract

In this research, the adsorption and detection abilities of Fe and Co doped graphene structures for methyl-mercaptan molecule were investigated by Density Functional Theory (DFT) method. B3LYP hybrid functional and LANL2DZ/6-31G(d,p) basis sets were used in the calculations. At the end of the adsorption processes, Fe and Co doped graphene structures were determined to be suitable adsorbents for the methyl-mercaptan molecule. In addition, charge transfer happened from the methyl-mercaptan molecule to the Fe and Co-doped graphene structures. The electronic sensor and the Φ-type sensor properties were also investigated and it was determined that Fe-graphene structure could be only used as an electronic sensor for methyl-mercaptan molecule at room temperature.

Thanks

The numerical calculations reported in this paper were in part completed at ULAKBIM/TUBITAK, High Performance and Grid Computing Center (the resources of TRUBA)

References

  • S.S. Meshkat, O. Tavakoli, A. Rashidi, M.D. Esrafili, Adsorptive mercaptan removal of liquid phase using nanoporous graphene: Equilibrium, kinetic study and DFT calculations, Ecotoxicology and Environmental Safety 165 (2018) 533-539.
  • J.M. Martínez-Magadán, R. Oviedo-Roa, P. García, R. Martínez-Palou, DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline, Fuel Processing Technology 97 (2012) 24-29.
  • D.K. Papayannis, A.M. Kosmas, N. Tsolakis, Computational study of ethanethiol conversion reactions catalyzed by acidic zeolites, Microporous Mesoporous Materials 262 (2018) 59-67.
  • M. Vahedpour, F. Karami, J. Shirazi, Theoretical study on the mechanism and thermodynamic of methanethiol and ozone reaction, Computational and Theoretical Chemistry 1042 (2014) 41–48.
  • J. Lu, H. Hao, L. Zhang, Z. Xu, L. Zhong, Y. Zhao, D. He, J. Liu, D. Chen, H. Pu, S. He, Y. Luo, The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH), Applied Catalysis B: Environmental 237 (2018) 185-197.
  • D. Zhang, M. Strawn, J.T. Novak, Z.W. Wang, Kinetic modeling of the effect of solids retention time on methanethiol dynamics in anaerobic digestion, Water Research 138 (2018) 301-311.
  • R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Methyl and Ethyl mercaptan molecular adsorption studies on novel Kagome arsenene nanosheets - A DFT outlook, Physica B: Condensed Matter 586 (2020) 412135.
  • M. Khalkhali, A. Ghorbani, B. Bayati, Study of adsorption and diffusion of methyl mercaptan and methane on FAU zeolite using molecular simulation, Polyhedron 171 (2019) 403-410.
  • H. Heidari, S. Afshari, E. Habibi, Sensing properties of pristine, Al-doped, and defected boron nitride nanosheet toward mercaptans: a first-principles study, RSC Advances 5 (2015) 94201-94209.
  • D. Cortés-Arriagada, N. Villegas-Escobar, D.E. Ortega, Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2 , SO2 and H2S), and the co-adsorption in O2 environments, Applied Surface Science 427 (2018) 227-236.
  • Z. Khodadadi, Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study, Physica E: Low-dimensional Systems and Nanostructures 99 (2018) 261-268.
  • T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications, Nano-Micro Letters 8 (2016) 95-119.
  • F. Hidalgo, A. Rubio-Ponce, C. Noguez, Tuning Adsorption of Methylamine and Methanethiol on Twisted-Bilayer Graphene, Journal of Physical Chemistry C 123 (2019) 15273-15283.
  • Z. Gao, W. Yang, X. Ding, G. Lv, W. Yan, Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S), Applied Surface Science 436 (2018) 585-595.
  • Y. Tang, L. Pan, W. Chen, Z. Shen, C. Li, X. Dai, The formation of H 2S on metal-modified graphene under hydrogen environments, Composite Interfaces 23 (2016) 423-432.
  • A. Shahmoradi, M. Ghorbanzadeh Ahangari, M. Jahanshahi, M. Mirghoreishi, E. Fathi, A. Hamed Mashhadzadeh, Removal of methylmercaptan pollution using Ni and Pt-decorated graphene: an ab-initio DFT study, Journal of Sulfur Chemistry 41 (2020) 593-604.
  • H.P. Zhang, X.G. Luo, H.T. Song, X.Y. Lin, X. Lu, Y. Tang, DFT study of adsorption and dissociation behavior of H 2 S on Fe-doped graphene, Applied Surface Science 317 (2014) 511-506.
  • F. Li, Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study, Computational Materials Science 69 (2013) 222-228.
  • W. KOHN AND L. J. SHAM, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review E 14 (1965) A1133-A1138.
  • M. J. Frisch, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A 38 (1988) 3098-3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785-789.
  • R.G. Pearson, R.G. Pearson, Chemical hardness and density functional theory, Journal of Chemical Sciences 117 (2005) 369-377.
  • N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, Cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry 29 (2008) 839–845.
  • R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions, Journal of Chemical Physics 23 (1955) 1833-1840.
  • M.W. Wong, Vibrational frequency prediction using density functional theory, Chemical Physics Letters 256 (1996) 391–399.
  • T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of Computational Chemistry 33 (2012) 580–592
  • M.F. Fellah, Pt doped (8,0) single wall carbon nanotube as hydrogen sensor: A density functional theory study, International Journal of Hydrogen Energy 44 (2019) 27010-27021.
  • S. Demir, M.F. Fellah, A DFT study on Pt doped (4, 0) SWCNT: CO adsorption and sensing, Applied Surface Science 504 (2020) 144141.
  • A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors Actuators B Chemical 161 (2012) 1025–1029.
  • N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, Journal of Physical Chemistry C 119 (2015) 6398–6404.
  • M. Eslami, V. Vahabi, A. Ahmadi Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study, Physica E: Low-dimensional Systems and Nanostructures 76 (2015) 6-11.
  • L. Li, J. Zhao, Defected boron nitride nanosheet as an electronic sensor for 4-aminophenol: A density functional theory study, Journal of Molecular Liquids 306 (2020) 112926.
  • M. Li, Y. Wei, G. Zhang, F. Wang, M. Li, H. Soleymanabadi, A DFT study on the detection of isoniazid drug by pristine, Si and Al doped C70 fullerenes, Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113878.
  • Y. Liu, C. Liu, A. Kumar, A selective NO sensor based on the semiconducting BC2N nanotubes: a computational study, Molecular Physics 118 (2020) 1798528.
  • G. Makov, Chemical hardness in density functional theory, Journal of Physical Chemistry A 99 (1995) 9337-9339.
  • P. Sjoberg, P. Politzer, Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes, Journal of Physical Chemistry A 94 (1990) 3959-3961.
  • G. Yu, L. Lyu, F. Zhang, D. Yan, W. Cao, C. Hu, Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution, RSC Advances 8 (2018) 3312-20.
  • F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Viñas, Are methyl groups electron-donating or electron-withdrawing in boron clusters? Permethylation of o-carborane, Journal of the American Chemical Society 127 (2005) 10158-10159.
Year 2021, , 35 - 45, 15.12.2021
https://doi.org/10.33435/tcandtc.1018412

Abstract

References

  • S.S. Meshkat, O. Tavakoli, A. Rashidi, M.D. Esrafili, Adsorptive mercaptan removal of liquid phase using nanoporous graphene: Equilibrium, kinetic study and DFT calculations, Ecotoxicology and Environmental Safety 165 (2018) 533-539.
  • J.M. Martínez-Magadán, R. Oviedo-Roa, P. García, R. Martínez-Palou, DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline, Fuel Processing Technology 97 (2012) 24-29.
  • D.K. Papayannis, A.M. Kosmas, N. Tsolakis, Computational study of ethanethiol conversion reactions catalyzed by acidic zeolites, Microporous Mesoporous Materials 262 (2018) 59-67.
  • M. Vahedpour, F. Karami, J. Shirazi, Theoretical study on the mechanism and thermodynamic of methanethiol and ozone reaction, Computational and Theoretical Chemistry 1042 (2014) 41–48.
  • J. Lu, H. Hao, L. Zhang, Z. Xu, L. Zhong, Y. Zhao, D. He, J. Liu, D. Chen, H. Pu, S. He, Y. Luo, The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH), Applied Catalysis B: Environmental 237 (2018) 185-197.
  • D. Zhang, M. Strawn, J.T. Novak, Z.W. Wang, Kinetic modeling of the effect of solids retention time on methanethiol dynamics in anaerobic digestion, Water Research 138 (2018) 301-311.
  • R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Methyl and Ethyl mercaptan molecular adsorption studies on novel Kagome arsenene nanosheets - A DFT outlook, Physica B: Condensed Matter 586 (2020) 412135.
  • M. Khalkhali, A. Ghorbani, B. Bayati, Study of adsorption and diffusion of methyl mercaptan and methane on FAU zeolite using molecular simulation, Polyhedron 171 (2019) 403-410.
  • H. Heidari, S. Afshari, E. Habibi, Sensing properties of pristine, Al-doped, and defected boron nitride nanosheet toward mercaptans: a first-principles study, RSC Advances 5 (2015) 94201-94209.
  • D. Cortés-Arriagada, N. Villegas-Escobar, D.E. Ortega, Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2 , SO2 and H2S), and the co-adsorption in O2 environments, Applied Surface Science 427 (2018) 227-236.
  • Z. Khodadadi, Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study, Physica E: Low-dimensional Systems and Nanostructures 99 (2018) 261-268.
  • T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications, Nano-Micro Letters 8 (2016) 95-119.
  • F. Hidalgo, A. Rubio-Ponce, C. Noguez, Tuning Adsorption of Methylamine and Methanethiol on Twisted-Bilayer Graphene, Journal of Physical Chemistry C 123 (2019) 15273-15283.
  • Z. Gao, W. Yang, X. Ding, G. Lv, W. Yan, Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S), Applied Surface Science 436 (2018) 585-595.
  • Y. Tang, L. Pan, W. Chen, Z. Shen, C. Li, X. Dai, The formation of H 2S on metal-modified graphene under hydrogen environments, Composite Interfaces 23 (2016) 423-432.
  • A. Shahmoradi, M. Ghorbanzadeh Ahangari, M. Jahanshahi, M. Mirghoreishi, E. Fathi, A. Hamed Mashhadzadeh, Removal of methylmercaptan pollution using Ni and Pt-decorated graphene: an ab-initio DFT study, Journal of Sulfur Chemistry 41 (2020) 593-604.
  • H.P. Zhang, X.G. Luo, H.T. Song, X.Y. Lin, X. Lu, Y. Tang, DFT study of adsorption and dissociation behavior of H 2 S on Fe-doped graphene, Applied Surface Science 317 (2014) 511-506.
  • F. Li, Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study, Computational Materials Science 69 (2013) 222-228.
  • W. KOHN AND L. J. SHAM, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review E 14 (1965) A1133-A1138.
  • M. J. Frisch, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A 38 (1988) 3098-3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785-789.
  • R.G. Pearson, R.G. Pearson, Chemical hardness and density functional theory, Journal of Chemical Sciences 117 (2005) 369-377.
  • N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, Cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry 29 (2008) 839–845.
  • R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions, Journal of Chemical Physics 23 (1955) 1833-1840.
  • M.W. Wong, Vibrational frequency prediction using density functional theory, Chemical Physics Letters 256 (1996) 391–399.
  • T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of Computational Chemistry 33 (2012) 580–592
  • M.F. Fellah, Pt doped (8,0) single wall carbon nanotube as hydrogen sensor: A density functional theory study, International Journal of Hydrogen Energy 44 (2019) 27010-27021.
  • S. Demir, M.F. Fellah, A DFT study on Pt doped (4, 0) SWCNT: CO adsorption and sensing, Applied Surface Science 504 (2020) 144141.
  • A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors Actuators B Chemical 161 (2012) 1025–1029.
  • N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, Journal of Physical Chemistry C 119 (2015) 6398–6404.
  • M. Eslami, V. Vahabi, A. Ahmadi Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study, Physica E: Low-dimensional Systems and Nanostructures 76 (2015) 6-11.
  • L. Li, J. Zhao, Defected boron nitride nanosheet as an electronic sensor for 4-aminophenol: A density functional theory study, Journal of Molecular Liquids 306 (2020) 112926.
  • M. Li, Y. Wei, G. Zhang, F. Wang, M. Li, H. Soleymanabadi, A DFT study on the detection of isoniazid drug by pristine, Si and Al doped C70 fullerenes, Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113878.
  • Y. Liu, C. Liu, A. Kumar, A selective NO sensor based on the semiconducting BC2N nanotubes: a computational study, Molecular Physics 118 (2020) 1798528.
  • G. Makov, Chemical hardness in density functional theory, Journal of Physical Chemistry A 99 (1995) 9337-9339.
  • P. Sjoberg, P. Politzer, Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes, Journal of Physical Chemistry A 94 (1990) 3959-3961.
  • G. Yu, L. Lyu, F. Zhang, D. Yan, W. Cao, C. Hu, Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution, RSC Advances 8 (2018) 3312-20.
  • F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Viñas, Are methyl groups electron-donating or electron-withdrawing in boron clusters? Permethylation of o-carborane, Journal of the American Chemical Society 127 (2005) 10158-10159.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Numan Yuksel 0000-0003-1268-5775

Ahmet Kose This is me 0000-0001-6611-4930

Mehmet Ferdi Fellah 0000-0001-6314-3365

Publication Date December 15, 2021
Submission Date November 3, 2021
Published in Issue Year 2021

Cite

APA Yuksel, N., Kose, A., & Fellah, M. F. (2021). Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study. Turkish Computational and Theoretical Chemistry, 5(2), 35-45. https://doi.org/10.33435/tcandtc.1018412
AMA Yuksel N, Kose A, Fellah MF. Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study. Turkish Comp Theo Chem (TC&TC). December 2021;5(2):35-45. doi:10.33435/tcandtc.1018412
Chicago Yuksel, Numan, Ahmet Kose, and Mehmet Ferdi Fellah. “Methyl-Mercaptane Adsorption and Sensing on Fe-/Co-Graphene Structures: A DFT Study”. Turkish Computational and Theoretical Chemistry 5, no. 2 (December 2021): 35-45. https://doi.org/10.33435/tcandtc.1018412.
EndNote Yuksel N, Kose A, Fellah MF (December 1, 2021) Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study. Turkish Computational and Theoretical Chemistry 5 2 35–45.
IEEE N. Yuksel, A. Kose, and M. F. Fellah, “Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study”, Turkish Comp Theo Chem (TC&TC), vol. 5, no. 2, pp. 35–45, 2021, doi: 10.33435/tcandtc.1018412.
ISNAD Yuksel, Numan et al. “Methyl-Mercaptane Adsorption and Sensing on Fe-/Co-Graphene Structures: A DFT Study”. Turkish Computational and Theoretical Chemistry 5/2 (December 2021), 35-45. https://doi.org/10.33435/tcandtc.1018412.
JAMA Yuksel N, Kose A, Fellah MF. Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study. Turkish Comp Theo Chem (TC&TC). 2021;5:35–45.
MLA Yuksel, Numan et al. “Methyl-Mercaptane Adsorption and Sensing on Fe-/Co-Graphene Structures: A DFT Study”. Turkish Computational and Theoretical Chemistry, vol. 5, no. 2, 2021, pp. 35-45, doi:10.33435/tcandtc.1018412.
Vancouver Yuksel N, Kose A, Fellah MF. Methyl-mercaptane adsorption and sensing on Fe-/Co-graphene structures: A DFT study. Turkish Comp Theo Chem (TC&TC). 2021;5(2):35-4.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)