Research Article
BibTex RIS Cite

Computational investigation of the synthesized new indoline-2,3-dione and their derivatives

Year 2022, , 52 - 65, 15.06.2022
https://doi.org/10.33435/tcandtc.1029382

Abstract

Computational studies using DFT incorporating the B3LYP/6-311++G(d,p) level is used to predict the stability of the synthesized 1-(5-phenyl-4H-1,2,4-triazol-3-yl)indoline-2,3-dione and its para-substituted (X: -CH3, -F, -CN, -NO2) in different solvents (acetone, ethanol, and methanol) and gas phases. Energetic properties, atomic charges, dipole moments, natural bond orbital (NBO), molecular electrostatic potential (MEP), and frontier molecular orbital (FMO) analyses are studied. The gauge independent atomic orbital (GIAO) method is used to quantify the nuclear magnetic resonance (NMR) chemical shift of the molecules. NBO analysis was used to assess the stability of the considered molecules, as well as their hyperconjugative relationships and electron delocalization. The charge transfer within the molecules is determined using the HOMO and LUMO analyses. The MEP surface was performed by the DFT method to predict the reactive sites for nucleophilic and electrophilic attacks. FMO analysis revealed that compound 5 (X=NO2) has a lower HOMO-LUMO energy (EHL) gaps in the considered phases, and is thus kinetically more stable in different media. Chemical reactivity indices as NO2 > CN > Cl > H > CH3 that predict the lowest (X=CH3) and highest (X=NO2) activity for the studied compounds. The energy difference derived from EHL gap leads to intramolecular hyperconjugative interactions pi→pi*.

References

  • [1] B. Namratha, S.L. Gaonkar, 1,2,4-triazoles: synthetic strategies and pharmacological profiles. Int. J. Pharm. Pharm. Sci. 6 (2014) 73.
  • [2] S. Nekkanti, R. Tokala, N. Shankaraiah, Targeting DNA minor groove by hybrid molecules as anticancer agents. Curr. Med. Chem. 24 (2017) 2887.
  • [3] S.A. El-Sebaey, Recent advances in 1,2,4-triazole scaffolds as antiviral agents. ChemistrySelect, 5 (2020) 11654.
  • [4] H.A.H. Elshemy, M.A. Zaki, E.I. Mohamed, S.I. Khan, P.F. Lamie, A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg. Chem. 97 (2020) 103673.
  • [5] K. Feng, C. Ni, L. Yu, W. Zhou, Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids Surf B 184 (2019) 110518.
  • [6] V. Arjunan, G. Durg adevi, S. Mohan, An experimental and theoretical investigation on the structure, vibrations and reactivity properties of pharmacologically active compounds 3-acetylindole and indole-3-acetamide. J. Mol. Struct. 1210 (2020) 128012.
  • [7] N. Afshar, F. Hatamjafari, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, Synthesis and characterization of some new indoline-based 1,2,4-triazole derivatives. Russ. J. Org. Chem. 56 (2020) 2153.
  • [8] N. Catozzi, M.G. Edwards, S.A. Raw, P. Wasnaire, R.J.K. Taylor, Synthesis of the Louisianin alkaloid family via a 1,2,4-triazine inverse-electron-demand Diels-Alder approach. J. Org. Chem. 74 (2009) 8343.
  • [9] E. Düğdü, Y. Ünver, D. Ünlüer, H. Tanak, K. Sancak, Y. Köysal, Ş. Işık, Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structure of 4-(4-methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole. Spectrochim. Acta A 108 (2013) 329.
  • [10] N. Özdemir, D. Türkpençe, Theoretical investigation of thione-thiol tautomerism, intermolecular double proton transfer reaction and hydrogen bonding interactions in 4-ethyl-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione. Theor. Comput. Chem. 1025 (2013) 35.
  • [11] J.K. Shneine, Y.H. Alaraji, Chemistry of 1,2,4-triazole: a review article. Int. J. Sci. Res. 5 (2016) 1411.
  • [12] M.-X. Song, X.-Q. Deng, Recent developments on triazole nucleus in anticonvulsant compounds: a review. J. Enzyme Inhib. Med. Chem. 33 (2018) 453.
  • [13] M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, F. Hatamjafari, DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives. J. Serb. Chem. Soc., 85 (2020) 1445.
  • [14] M.A. Johnson, G.M. Maggiora, Concepts and Application of Molecular Similarity, John Wiley Sons, New York, (1990).
  • [15] E. Yadav, M. Singh, P.N. Saxena, Structure-activity relationship of some type-II Pyrethroids: A study based on atomic charges, molecular electrostatic potential surfaces and molecular orbitals analysis. Natl. Acad. Sci. Lett. 37 (2014) 245.
  • [16] S. Chidangil, P.C. Mishra, Structure-activity relationship for some 2′,3′-dideoxynucleoside anti-HIV drugs using molecular electrostatic potential mapping. J. Mol. Model. 3 (1997) 172.
  • [17] U. Sarkar, D.R. Roy, P.K. Chattaraj, R. Parthasarathi, J. Padmanabhan, V. Subramanian, A conceptual DFT approach towards analysing toxicity. J. Chem. Sci. 117, (2005) 599.
  • [18] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (1988) 785.
  • [19] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993) 5648.
  • [20] J.K. Badenhoop, F. Weinhold, Natural steric analysis of internal rotation barriers. Int. J. Quantum Chem. 72 (1999) 269.
  • [21] P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R.V.E. Hommes, Nucleus-independent chemical shifts:  A simple and efficient aromaticity probe. J. Am. Chem. Soc. 118 (1996) 6317.
  • [22] P. Cysewski, An ab initio study on nucleic acid bases aromaticities. J. Mol. Struct. (Theochem) 714 (2005) 29
  • [23] S. Nigam, C. Majumder, S.K. Kulshreshtha, Theoretical study of aromaticity in inorganic tetramer clusters. J. Chem. Sci. 118 (2006) 575.
  • [24] P.v.R., Schleyer, M. Manoharan, Z.X. Wang, B. Kiran., H. Jiao, R. Puchta, N. Hommes, Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org. Lett. 3 (2001) 2465.
  • [25] P.v.R. Schleyer, H. Jiao, B. Goldfuss, P.K. Freeman, Aromaticity and antiaromaticity in five-membered C4H4X ring systems: “classical” and “magnetic” concepts may not be “orthogonal”. Angew. Chem. Int. Ed. Engl. 34 (1995) 337.
  • [26] J. R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 104 (1996) 5497.
  • [27] K. Wolinski, J.F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 112 (1990) 8251.
  • [28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Revision B. 01; Gaussian: Wallingford, CT, 2009.
  • [29] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14 (1993) 1347.
  • [30] S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 181, 55 (1981) 117.
  • [31] S. Miertuš, J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 65 (1982) 239.
  • [32] M.T. Cancès, V. Mennucci, J. Tomasi, A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107 (1997) 3032.
  • [33] M. Alcolea Palafox, G. Tardajos, A. Guerrero-Martinez, V.K. Rastogi, D. Mishra, S.P. Ojha, W. Kiefer, FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chem. Phys. 340 (2007) 17.
  • [34] A. Salimi Beni, M. Aazari, A. Najafi Chermahini, M. Zarandi, Density functional theory of tautomerism and water-assisted proton transfer of glycoluril. Russ. J. Phys. Chem. A 90 (2016) 1859. [35] P.v.R. Schleyer, H. Jiao, What is aromaticity? Pure Appl. Chem. 68 (1996) 209.
  • [36] T.M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, Separation of the energetic and geometric contributions to aromaticity, 2. Analysis of the aromatic character of benzene rings in their various topological environments in the benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 36 (1996) 1135.
  • [37] S. Xavier, S. Periandy, Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations. Spectrochim. Acta A 149 (2015) 216.
  • [38] Y. Ruiz-Morales, HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and Asphaltenes: a theoretical study. I. J. Phys. Chem. A 106 (2002) 11283.
  • [39] E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An Euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11 (1979) 115.
  • [40] J.E. Carpenter, F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J. Mol. Struct. (Theochem) 169 (1988) 41.
Year 2022, , 52 - 65, 15.06.2022
https://doi.org/10.33435/tcandtc.1029382

Abstract

References

  • [1] B. Namratha, S.L. Gaonkar, 1,2,4-triazoles: synthetic strategies and pharmacological profiles. Int. J. Pharm. Pharm. Sci. 6 (2014) 73.
  • [2] S. Nekkanti, R. Tokala, N. Shankaraiah, Targeting DNA minor groove by hybrid molecules as anticancer agents. Curr. Med. Chem. 24 (2017) 2887.
  • [3] S.A. El-Sebaey, Recent advances in 1,2,4-triazole scaffolds as antiviral agents. ChemistrySelect, 5 (2020) 11654.
  • [4] H.A.H. Elshemy, M.A. Zaki, E.I. Mohamed, S.I. Khan, P.F. Lamie, A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg. Chem. 97 (2020) 103673.
  • [5] K. Feng, C. Ni, L. Yu, W. Zhou, Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids Surf B 184 (2019) 110518.
  • [6] V. Arjunan, G. Durg adevi, S. Mohan, An experimental and theoretical investigation on the structure, vibrations and reactivity properties of pharmacologically active compounds 3-acetylindole and indole-3-acetamide. J. Mol. Struct. 1210 (2020) 128012.
  • [7] N. Afshar, F. Hatamjafari, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, Synthesis and characterization of some new indoline-based 1,2,4-triazole derivatives. Russ. J. Org. Chem. 56 (2020) 2153.
  • [8] N. Catozzi, M.G. Edwards, S.A. Raw, P. Wasnaire, R.J.K. Taylor, Synthesis of the Louisianin alkaloid family via a 1,2,4-triazine inverse-electron-demand Diels-Alder approach. J. Org. Chem. 74 (2009) 8343.
  • [9] E. Düğdü, Y. Ünver, D. Ünlüer, H. Tanak, K. Sancak, Y. Köysal, Ş. Işık, Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structure of 4-(4-methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole. Spectrochim. Acta A 108 (2013) 329.
  • [10] N. Özdemir, D. Türkpençe, Theoretical investigation of thione-thiol tautomerism, intermolecular double proton transfer reaction and hydrogen bonding interactions in 4-ethyl-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione. Theor. Comput. Chem. 1025 (2013) 35.
  • [11] J.K. Shneine, Y.H. Alaraji, Chemistry of 1,2,4-triazole: a review article. Int. J. Sci. Res. 5 (2016) 1411.
  • [12] M.-X. Song, X.-Q. Deng, Recent developments on triazole nucleus in anticonvulsant compounds: a review. J. Enzyme Inhib. Med. Chem. 33 (2018) 453.
  • [13] M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, F. Hatamjafari, DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives. J. Serb. Chem. Soc., 85 (2020) 1445.
  • [14] M.A. Johnson, G.M. Maggiora, Concepts and Application of Molecular Similarity, John Wiley Sons, New York, (1990).
  • [15] E. Yadav, M. Singh, P.N. Saxena, Structure-activity relationship of some type-II Pyrethroids: A study based on atomic charges, molecular electrostatic potential surfaces and molecular orbitals analysis. Natl. Acad. Sci. Lett. 37 (2014) 245.
  • [16] S. Chidangil, P.C. Mishra, Structure-activity relationship for some 2′,3′-dideoxynucleoside anti-HIV drugs using molecular electrostatic potential mapping. J. Mol. Model. 3 (1997) 172.
  • [17] U. Sarkar, D.R. Roy, P.K. Chattaraj, R. Parthasarathi, J. Padmanabhan, V. Subramanian, A conceptual DFT approach towards analysing toxicity. J. Chem. Sci. 117, (2005) 599.
  • [18] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (1988) 785.
  • [19] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993) 5648.
  • [20] J.K. Badenhoop, F. Weinhold, Natural steric analysis of internal rotation barriers. Int. J. Quantum Chem. 72 (1999) 269.
  • [21] P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R.V.E. Hommes, Nucleus-independent chemical shifts:  A simple and efficient aromaticity probe. J. Am. Chem. Soc. 118 (1996) 6317.
  • [22] P. Cysewski, An ab initio study on nucleic acid bases aromaticities. J. Mol. Struct. (Theochem) 714 (2005) 29
  • [23] S. Nigam, C. Majumder, S.K. Kulshreshtha, Theoretical study of aromaticity in inorganic tetramer clusters. J. Chem. Sci. 118 (2006) 575.
  • [24] P.v.R., Schleyer, M. Manoharan, Z.X. Wang, B. Kiran., H. Jiao, R. Puchta, N. Hommes, Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org. Lett. 3 (2001) 2465.
  • [25] P.v.R. Schleyer, H. Jiao, B. Goldfuss, P.K. Freeman, Aromaticity and antiaromaticity in five-membered C4H4X ring systems: “classical” and “magnetic” concepts may not be “orthogonal”. Angew. Chem. Int. Ed. Engl. 34 (1995) 337.
  • [26] J. R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 104 (1996) 5497.
  • [27] K. Wolinski, J.F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 112 (1990) 8251.
  • [28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Revision B. 01; Gaussian: Wallingford, CT, 2009.
  • [29] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14 (1993) 1347.
  • [30] S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 181, 55 (1981) 117.
  • [31] S. Miertuš, J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 65 (1982) 239.
  • [32] M.T. Cancès, V. Mennucci, J. Tomasi, A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107 (1997) 3032.
  • [33] M. Alcolea Palafox, G. Tardajos, A. Guerrero-Martinez, V.K. Rastogi, D. Mishra, S.P. Ojha, W. Kiefer, FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chem. Phys. 340 (2007) 17.
  • [34] A. Salimi Beni, M. Aazari, A. Najafi Chermahini, M. Zarandi, Density functional theory of tautomerism and water-assisted proton transfer of glycoluril. Russ. J. Phys. Chem. A 90 (2016) 1859. [35] P.v.R. Schleyer, H. Jiao, What is aromaticity? Pure Appl. Chem. 68 (1996) 209.
  • [36] T.M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, Separation of the energetic and geometric contributions to aromaticity, 2. Analysis of the aromatic character of benzene rings in their various topological environments in the benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 36 (1996) 1135.
  • [37] S. Xavier, S. Periandy, Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations. Spectrochim. Acta A 149 (2015) 216.
  • [38] Y. Ruiz-Morales, HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and Asphaltenes: a theoretical study. I. J. Phys. Chem. A 106 (2002) 11283.
  • [39] E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An Euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11 (1979) 115.
  • [40] J.E. Carpenter, F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J. Mol. Struct. (Theochem) 169 (1988) 41.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Abolfazl Shiroudi 0000-0002-0765-6315

Publication Date June 15, 2022
Submission Date November 28, 2021
Published in Issue Year 2022

Cite

APA Shiroudi, A. (2022). Computational investigation of the synthesized new indoline-2,3-dione and their derivatives. Turkish Computational and Theoretical Chemistry, 6(1), 52-65. https://doi.org/10.33435/tcandtc.1029382
AMA Shiroudi A. Computational investigation of the synthesized new indoline-2,3-dione and their derivatives. Turkish Comp Theo Chem (TC&TC). June 2022;6(1):52-65. doi:10.33435/tcandtc.1029382
Chicago Shiroudi, Abolfazl. “Computational Investigation of the Synthesized New Indoline-2,3-Dione and Their Derivatives”. Turkish Computational and Theoretical Chemistry 6, no. 1 (June 2022): 52-65. https://doi.org/10.33435/tcandtc.1029382.
EndNote Shiroudi A (June 1, 2022) Computational investigation of the synthesized new indoline-2,3-dione and their derivatives. Turkish Computational and Theoretical Chemistry 6 1 52–65.
IEEE A. Shiroudi, “Computational investigation of the synthesized new indoline-2,3-dione and their derivatives”, Turkish Comp Theo Chem (TC&TC), vol. 6, no. 1, pp. 52–65, 2022, doi: 10.33435/tcandtc.1029382.
ISNAD Shiroudi, Abolfazl. “Computational Investigation of the Synthesized New Indoline-2,3-Dione and Their Derivatives”. Turkish Computational and Theoretical Chemistry 6/1 (June 2022), 52-65. https://doi.org/10.33435/tcandtc.1029382.
JAMA Shiroudi A. Computational investigation of the synthesized new indoline-2,3-dione and their derivatives. Turkish Comp Theo Chem (TC&TC). 2022;6:52–65.
MLA Shiroudi, Abolfazl. “Computational Investigation of the Synthesized New Indoline-2,3-Dione and Their Derivatives”. Turkish Computational and Theoretical Chemistry, vol. 6, no. 1, 2022, pp. 52-65, doi:10.33435/tcandtc.1029382.
Vancouver Shiroudi A. Computational investigation of the synthesized new indoline-2,3-dione and their derivatives. Turkish Comp Theo Chem (TC&TC). 2022;6(1):52-65.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)