Research Article
BibTex RIS Cite

Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene

Year 2023, , 1 - 11, 15.05.2023
https://doi.org/10.33435/tcandtc.1144794

Abstract

We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.

References

  • [1] R. Atkinson, “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmospheric Environment. Part A. General Topics, 24 (1990) 1-41.
  • [2] B.J. Finlayson-Pitts, J.N. Pitts, “Chemistry of the Upper and Lower Atmosphere,” Academic Press, San Diego, 2000.
  • [3] R.J. Cvetanović, “Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons,” Journal of Physical Chemistry Reference Data, 16 (1987) 261-326.
  • [4] D.L. Baulch, C.T. Bowman, C.J. Cobos, et al., “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” Journal of Physical Chemistry Reference Data, 34 (2005) 757.
  • [5] V.D. Knyazev, V.S. Arutyunov, V.I. Vedeneev, “The mechanism of O(3P) atom reaction with ethylene and other simple olefins,” International Journal of Chemistry Kinetics, 24 (1992) 545-561.
  • [6] T.L. Nguyen, L. Vereecken, X.J. Hou, et al., “Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(XAg):  A comprehensive theoretical study,” Journal of Physical Chemistry A, 109 (2005) 7489-7499.
  • [7] C. Cavallotti, F. Leonori, N. Balucani, et al., “Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P) + propene reaction under combustion conditions,” Journal of Physical Chemistry Letters, 5 (2014) 4213-4218.
  • [8] H. Sabbah, L. Biennier, I.R. Sims, et al., “Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes,” Science, 317 (2007) 102-105.
  • [9] P. Zhao, W. Yuan, H. Sun, et al., “Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers,” Proceedings of the Combustion Institute, 35 (2015) 309-316.
  • [10] R.J. Cvetanović, “Reaction of oxygen atoms with ethylene,” Journal of Chemical Physics, 23 (1955) 1375-1380.
  • [11] R.J. Cvetanović, “Biradical intermediate in the addition of the ground state oxygen atoms, O(3P), to olefins,” Journal of Physical Chemistry, 74 (1970) 2730-2732.
  • [12] R. Quandt, Z. Min, X. Wang, et al., “Reactions of O(3P) with alkenes:  H, CH2CHO, CO, and OH channels,” Journal of Physical Chemistry A, 102 (1998) 60-64.
  • [13] S. Hirokami, R.J. Cvetanović, “Reaction of oxygen atoms, O(3P), with olefins in liquid nitrogen solution at 770K,” Journal of American Chemical Society, 96 (1974) 3738-3746.
  • [14] T. Oguchi, A. Ishizaki, Y. Kakuta, et al., “Mechanism of the reactions of butenes with O (3P): The yields of CH3 and C2H5,” Journal of Physical Chemistry A, 108 (2004) 1409-1416.
  • [15] C.A. Taatjes, N. Hansen, A. McIlroy, et al., “Enols are common intermediates in hydrocarbon oxidation,” Science, 308 (2005) 1887-1889.
  • [16] Z. Min, T.H. Wong, H. Su, et al., “Reaction of O (3P) with alkenes: Side chain vs double bond attack,” Journal of Physical Chemistry A, 104 (2000) 9941-9943.
  • [17] B. Messaoudi, S.M. Mekelleche, J. Alvarez-Idaboy, et al., “Theoretical study of the complex reaction of O(3P) with trans-2-butene,” Theoretical Chemistry Accounts, 132 (2012) 1366.
  • [18] B. Messaoudi, S.M. Mekelleche, N. Mora-Diez, “Theoretical study of the complex reaction of O(3P) with cis-2-butene,” Theoretical Chemistry Accounts, 132 (2013) 1394.
  • [19] R.J. Cvetanović, L. Doyle, “Reaction of oxygen atoms with butadiene,” Canadian Journal of Chemistry, 38 (1960) 2187-2195.
  • [20] J. Miller, M. Branch, W. McLean, “Twentieth symposium (international) on combustion,” The Combustion Institute: Pittsburgh, (1984) 673.
  • [21] J.A. Cole, J.D. Bittner, J.P. Longwell, et al., “Formation mechanisms of aromatic compounds in aliphatic flames,” Combustion Flame, 56 (1984) 51-70.
  • [22] P. Dagaut, M. Cathonnet, “The oxidation of 1,3-butadiene: Experimental results and kinetic modeling,” Combustion Science Technology, 140 (1998) 225-257.
  • [23] H. Wang, A. Laskin, Z. Djurisic, et al., “Fall technical meeting of the eastern states,” Section of the combustion institute. Raleigh, NC, (1999) 129-132.
  • [24] A. Laskin, H. Wang, “On initiation reactions of acetylene oxidation in shock tubes: A quantum mechanical and kinetic modeling study,” Chemical Physics Letters, 303 (1999) 43-49.
  • [25] R. Atkinson, J. Pitts Jr, “Absolute rate constants for the reaction of O(3P) atoms with allene, 1,3-butadiene, and vinyl methyl ether over the temperature range 297–439K,” Journal of Chemical Physics, 67 (1977) 2492-2495.
  • [26] W. Nip, D. Singleton, R.J. Cvetanović, “Temperature dependence of rate constants for reaction of oxygen atoms, O(3P), with allene and 1,3-butadiene,” Canadian Journal of Chemistry, 57 (1979) 949-952.
  • [27] D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, “Current status of transition-state theory,” Journal of Physical Chemistry, 100 (1996) 12771-12800.
  • [28] E. Wigner, “The transition state method,” Trans Faraday Society, 34 (1938) 29-41.
  • [29] K.J. Laidler, “Theories of chemical reaction rates,” McGraw-Hill Inc, 1969.
  • [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [31] C. Møller, M.S. Plesset, “Note on an approximation treatment for many-electron systems,” Physical Reviews, 46 (1934) 618-622.
  • [32] L.A. Curtiss, K. Raghavachari, P.C. Redfern, et al., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” Journal of Chemical Physics, 109 (1998) 7764-7776.
  • [33] L.A. Curtiss, K. Raghavachari, “Gaussian-3 and related methods for accurate thermochemistry,” Theoretical Chemistry Accounts, 108 (2002) 61-70.
  • [34] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VII. Use of the minimum population localization method,” Journal of Chemical Physics, 112 (2000) 6532-6542.
  • [35] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” Journal of Chemical Physics, 110 (1999) 2822-2827.
  • [36] C. Gonzalez, H.B. Schlegel, “Reaction path following in mass-weighted internal coordinates,” Journal of Physical Chemistry, 94 (1990) 5523-5527.
  • [37] E. Prosen, F. Maron, F. Rossini, “Heats of combustion, formation, and insomerization of 10 C-4 hydrocarbons,” Journal of Research of the National Institute of Standards and Technology, 46 (1951) 106-112.
  • [38] F. Tureček, “2-hydroxybutadiene: Preparation, ionization energy and heat of formation,” Tetrahedron Letters, 25 (1984) 5133-5134.
  • [39] J. Cox, D.D. Wagman, V.A. Medvedev, “CODATA key values for thermodynamics,” Chem/Mats-Sci/E, 1989.
  • [40] R. Atkinson, S.M. Aschmann, “Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296±2 K,” International Journal of Chemical Kinetics, 20 (1988) 513-539.
  • [41] R. Atkinson, S.M. Aschmann, M.A. Goodman, “Kinetics of the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes,” International Journal of Chemical Kinetics, 19 (1987) 299-307.
  • [42] D.R. Paulson, F.Y. Tang, R.B. Sloane, “Photochemistry of epoxy olefins. II. Photosensitized geometric isomerization and rearrangement of the isomeric 4, 5-epoxy-2-hexenes,” Journal of Organic Chemistry, 38 (1973) 3967-3968.
  • [43] T. Do Minh, A. Trozzolo, G. Griffin, “Low-temperature photochemistry of oxiranes. II. Formation of carbonyl ylides and their stereospecific interconversion with oxiranes,” Journal of American Chemical Society, 92 (1970) 1402-1403.
  • [44] J.P. Guthrie, “Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,” Canadian Journal of Chemistry, 56 (1978) 962-973.
  • [45] D.H. Ess, K.N. Houk, “Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions,” Journal of Physical Chemistry A, 109 (2005) 9542-9553.
  • [46] B. Messaoudi, “Quantum chemical study of the reaction of trichloroethylene with O(3P),” International Journal of Chemical Kinetics, 52 (2020) 589-598.
  • [47] D.L. Singleton, R.J. Cvetanović, “Temperature dependence of the reactions of oxygen atoms with olefins,” Journal of American Chemical Society, 98 (1976) 6812-6819.
  • [48] G.Y. Adusei, A. Fontijn, “Kinetics of the reaction between O(3P) atoms and 1,3-butadiene between 280 and 1015K,” Journal of Physical Chemistry, 97 (1993) 1406-1408.
  • [49] S. Canneaux, F. Bohr, E. Henon, KiSThelP. Version 2019.
Year 2023, , 1 - 11, 15.05.2023
https://doi.org/10.33435/tcandtc.1144794

Abstract

References

  • [1] R. Atkinson, “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmospheric Environment. Part A. General Topics, 24 (1990) 1-41.
  • [2] B.J. Finlayson-Pitts, J.N. Pitts, “Chemistry of the Upper and Lower Atmosphere,” Academic Press, San Diego, 2000.
  • [3] R.J. Cvetanović, “Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons,” Journal of Physical Chemistry Reference Data, 16 (1987) 261-326.
  • [4] D.L. Baulch, C.T. Bowman, C.J. Cobos, et al., “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” Journal of Physical Chemistry Reference Data, 34 (2005) 757.
  • [5] V.D. Knyazev, V.S. Arutyunov, V.I. Vedeneev, “The mechanism of O(3P) atom reaction with ethylene and other simple olefins,” International Journal of Chemistry Kinetics, 24 (1992) 545-561.
  • [6] T.L. Nguyen, L. Vereecken, X.J. Hou, et al., “Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(XAg):  A comprehensive theoretical study,” Journal of Physical Chemistry A, 109 (2005) 7489-7499.
  • [7] C. Cavallotti, F. Leonori, N. Balucani, et al., “Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P) + propene reaction under combustion conditions,” Journal of Physical Chemistry Letters, 5 (2014) 4213-4218.
  • [8] H. Sabbah, L. Biennier, I.R. Sims, et al., “Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes,” Science, 317 (2007) 102-105.
  • [9] P. Zhao, W. Yuan, H. Sun, et al., “Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers,” Proceedings of the Combustion Institute, 35 (2015) 309-316.
  • [10] R.J. Cvetanović, “Reaction of oxygen atoms with ethylene,” Journal of Chemical Physics, 23 (1955) 1375-1380.
  • [11] R.J. Cvetanović, “Biradical intermediate in the addition of the ground state oxygen atoms, O(3P), to olefins,” Journal of Physical Chemistry, 74 (1970) 2730-2732.
  • [12] R. Quandt, Z. Min, X. Wang, et al., “Reactions of O(3P) with alkenes:  H, CH2CHO, CO, and OH channels,” Journal of Physical Chemistry A, 102 (1998) 60-64.
  • [13] S. Hirokami, R.J. Cvetanović, “Reaction of oxygen atoms, O(3P), with olefins in liquid nitrogen solution at 770K,” Journal of American Chemical Society, 96 (1974) 3738-3746.
  • [14] T. Oguchi, A. Ishizaki, Y. Kakuta, et al., “Mechanism of the reactions of butenes with O (3P): The yields of CH3 and C2H5,” Journal of Physical Chemistry A, 108 (2004) 1409-1416.
  • [15] C.A. Taatjes, N. Hansen, A. McIlroy, et al., “Enols are common intermediates in hydrocarbon oxidation,” Science, 308 (2005) 1887-1889.
  • [16] Z. Min, T.H. Wong, H. Su, et al., “Reaction of O (3P) with alkenes: Side chain vs double bond attack,” Journal of Physical Chemistry A, 104 (2000) 9941-9943.
  • [17] B. Messaoudi, S.M. Mekelleche, J. Alvarez-Idaboy, et al., “Theoretical study of the complex reaction of O(3P) with trans-2-butene,” Theoretical Chemistry Accounts, 132 (2012) 1366.
  • [18] B. Messaoudi, S.M. Mekelleche, N. Mora-Diez, “Theoretical study of the complex reaction of O(3P) with cis-2-butene,” Theoretical Chemistry Accounts, 132 (2013) 1394.
  • [19] R.J. Cvetanović, L. Doyle, “Reaction of oxygen atoms with butadiene,” Canadian Journal of Chemistry, 38 (1960) 2187-2195.
  • [20] J. Miller, M. Branch, W. McLean, “Twentieth symposium (international) on combustion,” The Combustion Institute: Pittsburgh, (1984) 673.
  • [21] J.A. Cole, J.D. Bittner, J.P. Longwell, et al., “Formation mechanisms of aromatic compounds in aliphatic flames,” Combustion Flame, 56 (1984) 51-70.
  • [22] P. Dagaut, M. Cathonnet, “The oxidation of 1,3-butadiene: Experimental results and kinetic modeling,” Combustion Science Technology, 140 (1998) 225-257.
  • [23] H. Wang, A. Laskin, Z. Djurisic, et al., “Fall technical meeting of the eastern states,” Section of the combustion institute. Raleigh, NC, (1999) 129-132.
  • [24] A. Laskin, H. Wang, “On initiation reactions of acetylene oxidation in shock tubes: A quantum mechanical and kinetic modeling study,” Chemical Physics Letters, 303 (1999) 43-49.
  • [25] R. Atkinson, J. Pitts Jr, “Absolute rate constants for the reaction of O(3P) atoms with allene, 1,3-butadiene, and vinyl methyl ether over the temperature range 297–439K,” Journal of Chemical Physics, 67 (1977) 2492-2495.
  • [26] W. Nip, D. Singleton, R.J. Cvetanović, “Temperature dependence of rate constants for reaction of oxygen atoms, O(3P), with allene and 1,3-butadiene,” Canadian Journal of Chemistry, 57 (1979) 949-952.
  • [27] D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, “Current status of transition-state theory,” Journal of Physical Chemistry, 100 (1996) 12771-12800.
  • [28] E. Wigner, “The transition state method,” Trans Faraday Society, 34 (1938) 29-41.
  • [29] K.J. Laidler, “Theories of chemical reaction rates,” McGraw-Hill Inc, 1969.
  • [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2009.
  • [31] C. Møller, M.S. Plesset, “Note on an approximation treatment for many-electron systems,” Physical Reviews, 46 (1934) 618-622.
  • [32] L.A. Curtiss, K. Raghavachari, P.C. Redfern, et al., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” Journal of Chemical Physics, 109 (1998) 7764-7776.
  • [33] L.A. Curtiss, K. Raghavachari, “Gaussian-3 and related methods for accurate thermochemistry,” Theoretical Chemistry Accounts, 108 (2002) 61-70.
  • [34] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VII. Use of the minimum population localization method,” Journal of Chemical Physics, 112 (2000) 6532-6542.
  • [35] J.A. Montgomery, M.J. Frisch, J.W. Ochterski, et al., “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” Journal of Chemical Physics, 110 (1999) 2822-2827.
  • [36] C. Gonzalez, H.B. Schlegel, “Reaction path following in mass-weighted internal coordinates,” Journal of Physical Chemistry, 94 (1990) 5523-5527.
  • [37] E. Prosen, F. Maron, F. Rossini, “Heats of combustion, formation, and insomerization of 10 C-4 hydrocarbons,” Journal of Research of the National Institute of Standards and Technology, 46 (1951) 106-112.
  • [38] F. Tureček, “2-hydroxybutadiene: Preparation, ionization energy and heat of formation,” Tetrahedron Letters, 25 (1984) 5133-5134.
  • [39] J. Cox, D.D. Wagman, V.A. Medvedev, “CODATA key values for thermodynamics,” Chem/Mats-Sci/E, 1989.
  • [40] R. Atkinson, S.M. Aschmann, “Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296±2 K,” International Journal of Chemical Kinetics, 20 (1988) 513-539.
  • [41] R. Atkinson, S.M. Aschmann, M.A. Goodman, “Kinetics of the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes,” International Journal of Chemical Kinetics, 19 (1987) 299-307.
  • [42] D.R. Paulson, F.Y. Tang, R.B. Sloane, “Photochemistry of epoxy olefins. II. Photosensitized geometric isomerization and rearrangement of the isomeric 4, 5-epoxy-2-hexenes,” Journal of Organic Chemistry, 38 (1973) 3967-3968.
  • [43] T. Do Minh, A. Trozzolo, G. Griffin, “Low-temperature photochemistry of oxiranes. II. Formation of carbonyl ylides and their stereospecific interconversion with oxiranes,” Journal of American Chemical Society, 92 (1970) 1402-1403.
  • [44] J.P. Guthrie, “Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,” Canadian Journal of Chemistry, 56 (1978) 962-973.
  • [45] D.H. Ess, K.N. Houk, “Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions,” Journal of Physical Chemistry A, 109 (2005) 9542-9553.
  • [46] B. Messaoudi, “Quantum chemical study of the reaction of trichloroethylene with O(3P),” International Journal of Chemical Kinetics, 52 (2020) 589-598.
  • [47] D.L. Singleton, R.J. Cvetanović, “Temperature dependence of the reactions of oxygen atoms with olefins,” Journal of American Chemical Society, 98 (1976) 6812-6819.
  • [48] G.Y. Adusei, A. Fontijn, “Kinetics of the reaction between O(3P) atoms and 1,3-butadiene between 280 and 1015K,” Journal of Physical Chemistry, 97 (1993) 1406-1408.
  • [49] S. Canneaux, F. Bohr, E. Henon, KiSThelP. Version 2019.
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Boulanouar Messaoudı 0000-0002-5638-2234

Mouna Cherıet This is me 0000-0002-3535-2220

Rayenne Djemıl This is me 0000-0001-8956-6809

Djameleddine Khatmi 0000-0002-5084-7678

Publication Date May 15, 2023
Submission Date July 20, 2022
Published in Issue Year 2023

Cite

APA Messaoudı, B., Cherıet, M., Djemıl, R., Khatmi, D. (2023). Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Computational and Theoretical Chemistry, 7(2), 1-11. https://doi.org/10.33435/tcandtc.1144794
AMA Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). May 2023;7(2):1-11. doi:10.33435/tcandtc.1144794
Chicago Messaoudı, Boulanouar, Mouna Cherıet, Rayenne Djemıl, and Djameleddine Khatmi. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry 7, no. 2 (May 2023): 1-11. https://doi.org/10.33435/tcandtc.1144794.
EndNote Messaoudı B, Cherıet M, Djemıl R, Khatmi D (May 1, 2023) Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Computational and Theoretical Chemistry 7 2 1–11.
IEEE B. Messaoudı, M. Cherıet, R. Djemıl, and D. Khatmi, “Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene”, Turkish Comp Theo Chem (TC&TC), vol. 7, no. 2, pp. 1–11, 2023, doi: 10.33435/tcandtc.1144794.
ISNAD Messaoudı, Boulanouar et al. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry 7/2 (May 2023), 1-11. https://doi.org/10.33435/tcandtc.1144794.
JAMA Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). 2023;7:1–11.
MLA Messaoudı, Boulanouar et al. “Quantum Investigation of the Reaction Between Triplet Oxygen O(3P) Atom and Butadiene”. Turkish Computational and Theoretical Chemistry, vol. 7, no. 2, 2023, pp. 1-11, doi:10.33435/tcandtc.1144794.
Vancouver Messaoudı B, Cherıet M, Djemıl R, Khatmi D. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Comp Theo Chem (TC&TC). 2023;7(2):1-11.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)