Research Article
BibTex RIS Cite

The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study

Year 2024, , 48 - 60, 21.05.2024
https://doi.org/10.33435/tcandtc.1327841

Abstract

In the present article, various conformers of licochalcone L, a chalcone derivative extracted from the G. inflata root, have been analyzed in the aqueous solution and gaseous phase using calculation based on density functional theory (DFT). Nonlinear optical parameters such as dipole moment (μ), mean polarizability (α), polarizability anisotropy (Δα) and the first order hyperpolarizability (β) have been estimated to examine the NLO properties of the title molecule. These parameters were found to be significantly higher than those of standard molecules, indicating the potential NLO applications of licochalcone L. The analysis of natural bond orbitals (NBO) has been carried out to characterize various intramolecular interactions. The nucleus-independent chemical shift (NICS) technique has been used to investigate the aromaticity. Further, the pKa values have been computed for each hydroxyl group, revealing that the neutral form predominates at physiological pH, while the monoanionic form becomes predominant at pH greater than 9. The impact of solvation on the molecular electrostatic potentials and frontier molecular orbitals has been investigated for the neutral as well as monoanionic form of licochalcone L. A variety of global chemical reactivity descriptors have been calculated to highlight the structure-activity relationship.

Supporting Institution

VIPS-TC, School of Engineering and Technology, Delhi-110034, India, Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology (DCRUST), Murthal, Haryana-131309, India, Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India

References

  • [1] A. Mittal, R. Kakkar, The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study, Free Radical Research 54 (2020) 777-786.
  • [2] A. Mittal, R. Kakkar, Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review, Results in Chemistry 3 (2021) 100216.
  • [3] A. Mittal, R. Kakkar, The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study, Phytochemistry 192 (2021) 112964.
  • [4] A. Mittal, V.K. Vashistha, D.K. Das, Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review, Free Radical Research 56 (2022) 378-397.
  • [5] Y. Murti, A. Goswam, P. Mishra, Synthesis and antioxidant activity of some chalcones and flavonoids, International Journal of PharmTech Research 5 (2013) 811–818.
  • [6] Y. Murti, D. Pathak, K. Pathak, Green chemistry approaches to the synthesis of flavonoids, Current Organic Chemistry 25 (2021) 2005–2027.
  • [7] J. Gupta, R. Gupta, B. Varshney, Green Approaches of Flavonoids in Cancer: Chemistry, Applications, Management, Healthcare and Future Perspectives, Journal of Pharmaceutical Research International 33 (2021) 130–143.
  • [8] A. Shrivastava, J.K. Gupta, M.K. Goyal, Flavonoids and antiepileptic drugs: a comprehensive review on their neuroprotective potentials, Journal of Medical Pharmaceutical and allied Sciences 11 (2022) 4179-4186.
  • [9] Z. Ali, M. Hawwal, M.M.A. Ahmed, B. Avula, A.G. Chittiboyina, J. Li, C. Wu, C. Taylor, Y.M. Chan, I.A. Khan, Licochalcone L, an undescribed retrochalcone from Glycyrrhiza inflata roots, Natural Product Research 36 (2021) 200-206.
  • [10] A. Mittal, R. Kakkar, A theoretical assessment of the structural and electronic features of some retrochalcones, International Journal of Quantum Chemistry 121 (2021) e26797.
  • [11] A. Mittal, S.P. Devi, R. Kakkar, A DFT study of the conformational and electronic properties of echinatin, a retrochalcone, and its anion in the gas phase and aqueous solution, Structural Chemistry 31 (2020) 2513-2524.
  • [12] A. Mittal, V.K. Vashistha, D.K. Das, Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: A DFT approach, Free Radical Research 57 (2023) 81-90.
  • [13] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A 38 (1988) 3098-3100.
  • [14] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B: Condensed Matter and Materials Physics 37 (1988) 785-789.
  • [15] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200-1211.
  • [16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision C.01, 2009.
  • [17] S.P. Devi, A. Mittal, R. Kakkar, Computational Studies on Reactions of Some Organic Azides with C− H Bonds, ChemistrySelect 6 (2021) 4368-4381.
  • [18] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, The Journal of Physical Chemistry B 113 (2009) 6378-6396.
  • [19] G. Saielli, Differential solvation free energies of oxonium and ammonium ions: insights from quantum chemical calculations, The Journal of Physical Chemistry A 114 (2010) 7261-7265.
  • [20] J.E. Carpenter, F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure, Journal of Molecular Structure: THEOCHEM 169 (1988) 41-62.
  • [21] E.D. Glendening, A.E, Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, 2009.
  • [22] A.E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree-Fock water dimer, The Journal of Chemical Physics 78 (1983) 4066-4073.
  • [23] A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis, The Journal of Chemical Physics 83 (1985) 735-746.
  • [24] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews 88 (1988) 899-926.
  • [25] F. Weinhold, C.R. Landis, Natural bond orbitals and extensions of localized bonding concepts, Chemistry Education Research and Practice 2 (2001) 91-104.
  • [26] K.B. Wiberg, Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron 24 (1968) 1083-1096.
  • [27] A. Stanger, Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity, The Journal of Organic Chemistry 71 (2006) 883-893.
  • [28] D. Pegu, J. Deb, C. Van Alsenoy, U. Sarkar, Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone, Spectroscopy Letters 50 (2017) 232-243.
  • [29] S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Review on theoretical aspect of nonlinear optics, Reviews on Advanced Materials Science 30 (2012) 175-183.
  • [30] K. Akhtari, K. Hassanzadeh, B. Fakhraei, H. Hassanzadeh, G. Akhtari, S.A. Zarei, First hyperpolarizability orientation in [70] PCBM isomers: A DFT study, Computational and Theoretical Chemistry 1038 (2014) 1-5.
  • [31] R. Kakkar, Atomic and Molecular Spectroscopy: Basic Concepts and Applications, Cambridge University Press, 2015.
  • [32] V. Chahal, R. Kakkar, Theoretical investigation of the structural and electronic features of SLC-0111, a novel inhibitor of human carbonic anhydrase IX, and its anion, Structural Chemistry 32 (2021) 1843-1856.
  • [33] P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J. van Eikema Hommes, Nucleus-independent chemical shifts: a simple and efficient aromaticity probe, Journal of the American Chemical Society 118 (1996) 6317-6318.
  • [34] C.P. Kelly, C.J. Cramer, D.G. Truhlar, Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton, The Journal of Physical Chemistry B 110 (2006) 16066-16081.
  • [35] F.R. Dutra, C.D.S. Silva, R. Custodio, On the Accuracy of the Direct Method to Calculate p K a from Electronic Structure Calculations, The Journal of Physical Chemistry A 125 (2020) 65-73.
  • [36] R. Kakkar, M. Bhandari, R. Gaba, Tautomeric transformations and reactivity of alloxan, Computational and Theoretical Chemistry 986 (2012) 14-24.
  • [37] R.G. Parr, L. von Szentpály., S. Liu, Electrophilicity index, Journal of the American Chemical Society 121 (1999) 1922-1924.
  • [38] L. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry, Organic and Biomolecular Chemistry 9 (2011) 7168-7175.
  • [39] H. Chermette, Chemical reactivity indexes in density functional theory, Journal of computational chemistry 20 (1999) 129-154.
  • [40] R.K. Roy, S. Krishnamurti, P. Geerlings, S. Pal, Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds, The Journal of Physical Chemistry A 102 (1998) 3746-3755.
  • [41] T. Koopmans, About the assignment of wave functions and eigenvalues to the individual electrons of an atom, Physica 1 (1934) 104-113.
  • [42] M. Drissi, N. Benhalima, Y. Megrouss, R. Rachida, A. Chouaih, F. Hamzaoui, Theoretical and experimental electrostatic potential around the m-nitrophenol molecule, Molecules 20 (2015) 4042-4054.
Year 2024, , 48 - 60, 21.05.2024
https://doi.org/10.33435/tcandtc.1327841

Abstract

References

  • [1] A. Mittal, R. Kakkar, The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study, Free Radical Research 54 (2020) 777-786.
  • [2] A. Mittal, R. Kakkar, Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review, Results in Chemistry 3 (2021) 100216.
  • [3] A. Mittal, R. Kakkar, The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study, Phytochemistry 192 (2021) 112964.
  • [4] A. Mittal, V.K. Vashistha, D.K. Das, Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review, Free Radical Research 56 (2022) 378-397.
  • [5] Y. Murti, A. Goswam, P. Mishra, Synthesis and antioxidant activity of some chalcones and flavonoids, International Journal of PharmTech Research 5 (2013) 811–818.
  • [6] Y. Murti, D. Pathak, K. Pathak, Green chemistry approaches to the synthesis of flavonoids, Current Organic Chemistry 25 (2021) 2005–2027.
  • [7] J. Gupta, R. Gupta, B. Varshney, Green Approaches of Flavonoids in Cancer: Chemistry, Applications, Management, Healthcare and Future Perspectives, Journal of Pharmaceutical Research International 33 (2021) 130–143.
  • [8] A. Shrivastava, J.K. Gupta, M.K. Goyal, Flavonoids and antiepileptic drugs: a comprehensive review on their neuroprotective potentials, Journal of Medical Pharmaceutical and allied Sciences 11 (2022) 4179-4186.
  • [9] Z. Ali, M. Hawwal, M.M.A. Ahmed, B. Avula, A.G. Chittiboyina, J. Li, C. Wu, C. Taylor, Y.M. Chan, I.A. Khan, Licochalcone L, an undescribed retrochalcone from Glycyrrhiza inflata roots, Natural Product Research 36 (2021) 200-206.
  • [10] A. Mittal, R. Kakkar, A theoretical assessment of the structural and electronic features of some retrochalcones, International Journal of Quantum Chemistry 121 (2021) e26797.
  • [11] A. Mittal, S.P. Devi, R. Kakkar, A DFT study of the conformational and electronic properties of echinatin, a retrochalcone, and its anion in the gas phase and aqueous solution, Structural Chemistry 31 (2020) 2513-2524.
  • [12] A. Mittal, V.K. Vashistha, D.K. Das, Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: A DFT approach, Free Radical Research 57 (2023) 81-90.
  • [13] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A 38 (1988) 3098-3100.
  • [14] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B: Condensed Matter and Materials Physics 37 (1988) 785-789.
  • [15] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200-1211.
  • [16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision C.01, 2009.
  • [17] S.P. Devi, A. Mittal, R. Kakkar, Computational Studies on Reactions of Some Organic Azides with C− H Bonds, ChemistrySelect 6 (2021) 4368-4381.
  • [18] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, The Journal of Physical Chemistry B 113 (2009) 6378-6396.
  • [19] G. Saielli, Differential solvation free energies of oxonium and ammonium ions: insights from quantum chemical calculations, The Journal of Physical Chemistry A 114 (2010) 7261-7265.
  • [20] J.E. Carpenter, F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure, Journal of Molecular Structure: THEOCHEM 169 (1988) 41-62.
  • [21] E.D. Glendening, A.E, Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, 2009.
  • [22] A.E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree-Fock water dimer, The Journal of Chemical Physics 78 (1983) 4066-4073.
  • [23] A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis, The Journal of Chemical Physics 83 (1985) 735-746.
  • [24] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews 88 (1988) 899-926.
  • [25] F. Weinhold, C.R. Landis, Natural bond orbitals and extensions of localized bonding concepts, Chemistry Education Research and Practice 2 (2001) 91-104.
  • [26] K.B. Wiberg, Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron 24 (1968) 1083-1096.
  • [27] A. Stanger, Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity, The Journal of Organic Chemistry 71 (2006) 883-893.
  • [28] D. Pegu, J. Deb, C. Van Alsenoy, U. Sarkar, Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone, Spectroscopy Letters 50 (2017) 232-243.
  • [29] S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Review on theoretical aspect of nonlinear optics, Reviews on Advanced Materials Science 30 (2012) 175-183.
  • [30] K. Akhtari, K. Hassanzadeh, B. Fakhraei, H. Hassanzadeh, G. Akhtari, S.A. Zarei, First hyperpolarizability orientation in [70] PCBM isomers: A DFT study, Computational and Theoretical Chemistry 1038 (2014) 1-5.
  • [31] R. Kakkar, Atomic and Molecular Spectroscopy: Basic Concepts and Applications, Cambridge University Press, 2015.
  • [32] V. Chahal, R. Kakkar, Theoretical investigation of the structural and electronic features of SLC-0111, a novel inhibitor of human carbonic anhydrase IX, and its anion, Structural Chemistry 32 (2021) 1843-1856.
  • [33] P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J. van Eikema Hommes, Nucleus-independent chemical shifts: a simple and efficient aromaticity probe, Journal of the American Chemical Society 118 (1996) 6317-6318.
  • [34] C.P. Kelly, C.J. Cramer, D.G. Truhlar, Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton, The Journal of Physical Chemistry B 110 (2006) 16066-16081.
  • [35] F.R. Dutra, C.D.S. Silva, R. Custodio, On the Accuracy of the Direct Method to Calculate p K a from Electronic Structure Calculations, The Journal of Physical Chemistry A 125 (2020) 65-73.
  • [36] R. Kakkar, M. Bhandari, R. Gaba, Tautomeric transformations and reactivity of alloxan, Computational and Theoretical Chemistry 986 (2012) 14-24.
  • [37] R.G. Parr, L. von Szentpály., S. Liu, Electrophilicity index, Journal of the American Chemical Society 121 (1999) 1922-1924.
  • [38] L. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry, Organic and Biomolecular Chemistry 9 (2011) 7168-7175.
  • [39] H. Chermette, Chemical reactivity indexes in density functional theory, Journal of computational chemistry 20 (1999) 129-154.
  • [40] R.K. Roy, S. Krishnamurti, P. Geerlings, S. Pal, Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds, The Journal of Physical Chemistry A 102 (1998) 3746-3755.
  • [41] T. Koopmans, About the assignment of wave functions and eigenvalues to the individual electrons of an atom, Physica 1 (1934) 104-113.
  • [42] M. Drissi, N. Benhalima, Y. Megrouss, R. Rachida, A. Chouaih, F. Hamzaoui, Theoretical and experimental electrostatic potential around the m-nitrophenol molecule, Molecules 20 (2015) 4042-4054.
There are 42 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics
Journal Section Research Article
Authors

Ankit Mittal 0000-0002-7990-9406

Mudita Nagpal 0009-0007-9471-7086

Varun Chahal 0000-0003-3038-9873

Vinod Kumar Vashistha 0000-0002-8987-5297

Early Pub Date November 29, 2023
Publication Date May 21, 2024
Submission Date July 15, 2023
Published in Issue Year 2024

Cite

APA Mittal, A., Nagpal, M., Chahal, V., Vashistha, V. K. (2024). The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study. Turkish Computational and Theoretical Chemistry, 8(2), 48-60. https://doi.org/10.33435/tcandtc.1327841
AMA Mittal A, Nagpal M, Chahal V, Vashistha VK. The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study. Turkish Comp Theo Chem (TC&TC). May 2024;8(2):48-60. doi:10.33435/tcandtc.1327841
Chicago Mittal, Ankit, Mudita Nagpal, Varun Chahal, and Vinod Kumar Vashistha. “The Electronic, Structural and Nonlinear Optical Properties of Licochalcone L in the Aqueous Solution and Gaseous Phase: A DFT Study”. Turkish Computational and Theoretical Chemistry 8, no. 2 (May 2024): 48-60. https://doi.org/10.33435/tcandtc.1327841.
EndNote Mittal A, Nagpal M, Chahal V, Vashistha VK (May 1, 2024) The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study. Turkish Computational and Theoretical Chemistry 8 2 48–60.
IEEE A. Mittal, M. Nagpal, V. Chahal, and V. K. Vashistha, “The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 2, pp. 48–60, 2024, doi: 10.33435/tcandtc.1327841.
ISNAD Mittal, Ankit et al. “The Electronic, Structural and Nonlinear Optical Properties of Licochalcone L in the Aqueous Solution and Gaseous Phase: A DFT Study”. Turkish Computational and Theoretical Chemistry 8/2 (May 2024), 48-60. https://doi.org/10.33435/tcandtc.1327841.
JAMA Mittal A, Nagpal M, Chahal V, Vashistha VK. The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study. Turkish Comp Theo Chem (TC&TC). 2024;8:48–60.
MLA Mittal, Ankit et al. “The Electronic, Structural and Nonlinear Optical Properties of Licochalcone L in the Aqueous Solution and Gaseous Phase: A DFT Study”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 2, 2024, pp. 48-60, doi:10.33435/tcandtc.1327841.
Vancouver Mittal A, Nagpal M, Chahal V, Vashistha VK. The electronic, structural and nonlinear optical properties of licochalcone L in the aqueous solution and gaseous phase: A DFT study. Turkish Comp Theo Chem (TC&TC). 2024;8(2):48-60.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)