Research Article
BibTex RIS Cite
Year 2024, , 108 - 121, 19.09.2024
https://doi.org/10.33435/tcandtc.1355772

Abstract

References

  • [1] J. Kołodziejska and M. Kołodziejczyk, Diclofenac in the treatment of pain in patients with rheumatic diseases, rheumatology, 56(3) (2018) 174-183.
  • [2] C. Pereira-Leite, C. Nunes, S. Reis, Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions, prog lipid res, 52(4) (2013) 571-584.
  • [3] L. J Marnett, The coxib experience: a look in the rearview mirror. Annu. Rev. Pharmacol. Toxicol. 49 (2009) 265– 290.
  • [4] C Michaux, C Charlier, Structural approach for cox-2 inhibition. Mini rev. Med. Chem. 4 (2004) 603– 615.
  • [5] J. D. Kumar, F. Zanderigo, J. Prabhakaran, H. Rubin‐Falcone, R. V. Parsey, J. J. Mann, In vivo evaluation of [11C]TMI, a COX-2 selective PET tracer, in baboons. Bioorg med chem lett. 28(23–24) (2018) 3592– 3595.
  • [6] S. M. I. Mahboubi Rabbani, A. Zarghi. Selective cox-2 inhibitors as anticancer agents: a patent review (2014–2018). Expert opin ther pat.29(6) (2019) 407–27.
  • [7] T. Orido, H. Fujino, Y. Hasegawa, K. Toyomura, T. Kawashima, T. Murayama, Indomethacin decreases arachidonic acid uptake in hca-7 human colon cancer cells. J. Pharmacol. Sci. 108 (2008) 389–392.
  • [8] T. J. Gan, Diclofenac: an update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 26 (2010) 1715–1731.
  • [9] M. Triggiani, F. Granata, A. Frattini, G. Marone, Activation of human inflammatory cells by secreted phospholipases a2. Biochim. Biophys. Acta mol. Cell biol. Lipids 1761 (2006) 1289–1300.
  • [10] A. M.Saeed, A. A.Al-Hamashi, Molecular Docking, ADMET Study, Synthesis, Characterization and Preliminary Antiproliferative Activity of Potential Histone Deacetylase Inhibitors with Isoxazole as New Zinc Binding Group, Iraqi Journal of Pharmaceutical Sciences 32 (2023) 188–203.
  • [11] M. A. Oleiwi, M. H. Zalzala, Synthesis, Molecular Docking Study and Cytotoxicity Evaluation of some Quinazolinone Derivatives as Nonclassical Antifolates and Potential Cytotoxic Agents, Iraqi Journal of Pharmaceutical Sciences 31 (2022) 283–296.
  • [12] A. A. Al-Hamashi, D. Chen, Y. Deng, G. Dong, R. Huang, Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5, Acta Pharmaceutica Sinica B 11 (2021) 2709-2718.
  • [13] Y. Hasan, A. Al-Hamashi, Identification Of Selisistat Derivatives As Sirt1-3 Inhibitors By In Silico Virtual Screening, Turkish Comp Theo Chem (Tc&Tc) 8 (2023) 1–11.
  • [14] W. S. Ahmed, A. A. Razzak Mahmood, R I. Al-Bayati, Synthesis and Evaluation of Antimicrobial Activity Of New Imides And Schiff Bases Derived From Ethyl-4-Amino Benzoate, Oriental Journal Of Chemistry 34 (2018) 2477-2486.
  • [15] H. Najeh Al-Saad, A. Abdul Razzak Mahmood, R. I. Al-Bayati, Design, Synthesis, Docking Study and Antiplatelet Evaluation Of New Thiosemicarbazide Derivatives Derived From Captopril, Oriental Journal Of Chemistry 35 (2019) 829-838.
  • [16] N. M. Mohammed, M. H. Mohammed, Z. M. Abdulkhaleq, Docking Study, Synthesis, Characterization and Preliminary Cytotoxic Evaluation of New 1,3,4- Thiadiazole Derivatives, Journal of Contemporary Medical Sciences 9 (2023) 271–279.
  • [17] Z.M. Abdulkhaleq, M. Hassan Mohammed, J. Suhail Wadi, Molecular Docking, Synthesis, Characterization, and Preliminary Cytotoxic evaluation of new 1, 3, 4-Thiadiazole Derivatives as Αlpha-Estrogen Receptor Modulator, Journal of Contemporary Medical Sciences, 8 (2022).
  • [18] A. I. Dirar, A. waddad, M. A. Mohamed, M.S. Mohamed, W. Osman, M. Elbadawi, et al, In silico pharmacokinetics and molecular docking of three leads isolated from tarconanthus camphorates. Int j pharm sci 8(5) (2016) 71-77.
  • [19] N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, C. R. Corbeil, Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go: docking/scoring methods-a review. Br j pharm 153(1) (2008) 7–26.
  • [20] M. K. Abdel-Latif, H.R. Abd El-mageed, H.S. Mohamed, F.M. Mustafa, Study the solvation effect on 6- phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile derivatives by td- dft calculations and molecular dynamics simulations. J mol struct 1200 (2020) 127056.
  • [21] H. S. H. Mohamed, S.A. Ahmed, Reviewing of synthesis and computational studies of pyrazolo pyrimidine derivatives. J chem rev 1(3) (2019) 154–251.
  • [22] A. C. Pierce, M. jacobs, C. Stuver-Moody, Docking study yields four novel inhibitors of the protooncogene pim-1 kinase. J med chem 51(6) (2008) 1972–1975.
  • [23] N. K. Salam, T. H. Huang, B. P. Kota, M. S. Kim, Y. Li, D. E. Hibbs, Novel ppargamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study: novel ppar-γ agonists from natural products. Chem bio drug des 71(1) (2008) 57–70.
  • [24] M. H. Potashman, J. Bready, A. Coxon, T. M. Jr. DeMelfi, L. Dipietro, N. Doerr, et al, Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors. J. Med. Chem. 50 (2007) 4351−4373.
  • [25] K. Sharma, A. Shrivastava, R. N. Mehra, G. S. Deora, M. M. Alam, M. S. Zaman, et al, Synthesis of novel benzimidazole acrylonitriles for inhibition of plasmodium falciparum growth by dual target inhibition. Arch. Pharm. 351 (2018) 1700251.
  • [26] S. K. Tripathi, R. Muttineni, S. K. Singh, Extra precision docking, free energy calculation and molecular dynamics simulation studies of cdk2 inhibitors. J theor biol. 334 (2013) 87–100.
  • [27] R. A. Laskowski, M. B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51 (2011) 2778– 2786.
  • [28] N. Cabrera, S. A. Cuesta, J. R. Mora, L. Calle, E. A.Márquez, R. Kaunas, et al, In silico searching for alternative lead compounds to treat type 2 diabetes through a QSAR and molecular dynamics study. Pharmaceutics 14 (2022) 232.
  • [29] B. S. Kumar, S. Anuragh, A. K. Kammala, K. Ilango, Computer aided drug design approach to screen Phytoconstituents of Adhatoda vasica as potential inhibitors of SARS-CoV-2 Main protease enzyme. Life 12 (2022) 315.
  • [30] Y. M. Khetmalis, S. Chitti, A. U. Wunnava, B. K. Kumar, B. K. Kumar, M. M. K. Kumar, et al, Design, synthesis and anti-mycobacterial evaluation of imidazo [1, 2-a] pyridine analogues. RSC Med. Chem. 13 (2022) 327– 342.
  • [31] A. K. Maurya, N. Mishra, In silico validation of coumarin derivatives as potential inhibitors against main protease, nsp10/nsp16-methyltransferase, phosphatase and endoribonuclease of sars cov-2. J biomol struct dyn. 39(18) (2021) 7306–7321.
  • [32] P. A. Greenidge, C. Kramer, J-C. Mozziconacci, R. Wolf, M.Mm/Gbsa Binding Energy Prediction on the Pdbbind Data Set:Successes, Failures, and Directions for Further Improvement. J. Chem.Inf. Model. 53 (2013) 201−209.
  • [33] El-Helby A.-G.A., Ayyad R.R., El-Adl K., Elkady H., Phthalazine-1, 4-dione derivatives as non-competitive AMPA receptor antagonists: design, synthesis, anticonvulsant evaluation, ADMET profile and molecular docking, Molecular diversity 23(2) (2019) 283–298.
  • [34] El-Helby A.G.A., Ayyad R.R., Zayed M.F., Abulkhair H.S., Elkady H., El-Adl K., Design, synthesis, in silico ADMET profile and GABA-A docking of novel phthalazines as potent anticonvulsants, Archiv Der Pharmazie 352(5) (2019) 1800387.
  • [35] (35). Abdallah A.E., Alesawy M.S., Eissa S.I., El-Fakharany E.M., Kalaba M.H., Sharaf M.H., et al, Design and synthesis of new 4-(2-nitrophenoxy) benzamide derivatives as potential antiviral agents: Molecular modeling and in vitro antiviral screening, New Journal of Chemistry 45(36) (2021) 16557–16571.
  • [36] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, et al, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. ;49(21):6177- 96.
  • [37] R. A. Friesner ra, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J med chem. 47(7) (2004) 1739–1749.
  • [38] M. Govindarasu, S. Ganeshan, M. A. Ansari, M. N. Alomary, S. A. Alyahya, S. Alghamdi, et al, In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets, Journal of Saudi Chemical Society 25 (2021) 101319.
  • [39] S. Zhao, Y.Y. Zhu, X.Y. Wang, Y.S. Liu, Y.X. Sun, Q.J. Zhao, et al. Structural insight into the interactions between structurally similar inhibitors and SIRT6, Int J Mol Sci. 21(7) (2020).
  • [40] M. J. Waring, J. Arrowsmith, A. R. Leach, P. D. Leeson, S. Mandrell, R. M. Owen, et al, An analysis of the attrition of drug candidates from four major pharmaceutical companies, Nat. Rev. Drug Discovery, 14 (2015) 475–486.
  • [41] L. L. Ferreira, A. D. Andricopulo, ADMET modeling approaches in drug discovery, Drug discovery today, 24 (2019) 1157–1165.

In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds

Year 2024, , 108 - 121, 19.09.2024
https://doi.org/10.33435/tcandtc.1355772

Abstract

The prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the Prime-MMGBSA module by the Schrödinger software package was used to identify compounds that showed marked specificity towards the COX-2 isoform. In addition, the ligands are subject to evaluation of their drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) characteristics using the QikProp module. Finally, molecular dynamics simulation has been calculated for the best molecule. The docking results indicated that all compounds own a predictive capability for specific binding to the COX-2 enzyme compared to the standard drug with a docking score range from -10.07 to -10.66 Kcal/mole, thus potentially overcoming the limitations imposed previously by the drugs currently used in clinical use. The ADMET analysis of the virtually active compounds demonstrated an acceptable drug-like profile and desirable pharmacokinetics properties. MM/GBSA calculation revealed that all the suggested compounds exhibited favorable free binding energies (-49.150 to - 60.185 Kcal/mole), indicating their strong potential to fit well into the COX-2 receptor. Finally, the MD simulation study revealed that compound 1 had perfect alignment with COX-2 receptor. The findings indicated that the compounds possess a predictive capability for specific binding to the COX-2 enzyme, thus potentially surmounting the restrictions imposed by the drugs currently employed in clinical use.

References

  • [1] J. Kołodziejska and M. Kołodziejczyk, Diclofenac in the treatment of pain in patients with rheumatic diseases, rheumatology, 56(3) (2018) 174-183.
  • [2] C. Pereira-Leite, C. Nunes, S. Reis, Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions, prog lipid res, 52(4) (2013) 571-584.
  • [3] L. J Marnett, The coxib experience: a look in the rearview mirror. Annu. Rev. Pharmacol. Toxicol. 49 (2009) 265– 290.
  • [4] C Michaux, C Charlier, Structural approach for cox-2 inhibition. Mini rev. Med. Chem. 4 (2004) 603– 615.
  • [5] J. D. Kumar, F. Zanderigo, J. Prabhakaran, H. Rubin‐Falcone, R. V. Parsey, J. J. Mann, In vivo evaluation of [11C]TMI, a COX-2 selective PET tracer, in baboons. Bioorg med chem lett. 28(23–24) (2018) 3592– 3595.
  • [6] S. M. I. Mahboubi Rabbani, A. Zarghi. Selective cox-2 inhibitors as anticancer agents: a patent review (2014–2018). Expert opin ther pat.29(6) (2019) 407–27.
  • [7] T. Orido, H. Fujino, Y. Hasegawa, K. Toyomura, T. Kawashima, T. Murayama, Indomethacin decreases arachidonic acid uptake in hca-7 human colon cancer cells. J. Pharmacol. Sci. 108 (2008) 389–392.
  • [8] T. J. Gan, Diclofenac: an update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 26 (2010) 1715–1731.
  • [9] M. Triggiani, F. Granata, A. Frattini, G. Marone, Activation of human inflammatory cells by secreted phospholipases a2. Biochim. Biophys. Acta mol. Cell biol. Lipids 1761 (2006) 1289–1300.
  • [10] A. M.Saeed, A. A.Al-Hamashi, Molecular Docking, ADMET Study, Synthesis, Characterization and Preliminary Antiproliferative Activity of Potential Histone Deacetylase Inhibitors with Isoxazole as New Zinc Binding Group, Iraqi Journal of Pharmaceutical Sciences 32 (2023) 188–203.
  • [11] M. A. Oleiwi, M. H. Zalzala, Synthesis, Molecular Docking Study and Cytotoxicity Evaluation of some Quinazolinone Derivatives as Nonclassical Antifolates and Potential Cytotoxic Agents, Iraqi Journal of Pharmaceutical Sciences 31 (2022) 283–296.
  • [12] A. A. Al-Hamashi, D. Chen, Y. Deng, G. Dong, R. Huang, Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5, Acta Pharmaceutica Sinica B 11 (2021) 2709-2718.
  • [13] Y. Hasan, A. Al-Hamashi, Identification Of Selisistat Derivatives As Sirt1-3 Inhibitors By In Silico Virtual Screening, Turkish Comp Theo Chem (Tc&Tc) 8 (2023) 1–11.
  • [14] W. S. Ahmed, A. A. Razzak Mahmood, R I. Al-Bayati, Synthesis and Evaluation of Antimicrobial Activity Of New Imides And Schiff Bases Derived From Ethyl-4-Amino Benzoate, Oriental Journal Of Chemistry 34 (2018) 2477-2486.
  • [15] H. Najeh Al-Saad, A. Abdul Razzak Mahmood, R. I. Al-Bayati, Design, Synthesis, Docking Study and Antiplatelet Evaluation Of New Thiosemicarbazide Derivatives Derived From Captopril, Oriental Journal Of Chemistry 35 (2019) 829-838.
  • [16] N. M. Mohammed, M. H. Mohammed, Z. M. Abdulkhaleq, Docking Study, Synthesis, Characterization and Preliminary Cytotoxic Evaluation of New 1,3,4- Thiadiazole Derivatives, Journal of Contemporary Medical Sciences 9 (2023) 271–279.
  • [17] Z.M. Abdulkhaleq, M. Hassan Mohammed, J. Suhail Wadi, Molecular Docking, Synthesis, Characterization, and Preliminary Cytotoxic evaluation of new 1, 3, 4-Thiadiazole Derivatives as Αlpha-Estrogen Receptor Modulator, Journal of Contemporary Medical Sciences, 8 (2022).
  • [18] A. I. Dirar, A. waddad, M. A. Mohamed, M.S. Mohamed, W. Osman, M. Elbadawi, et al, In silico pharmacokinetics and molecular docking of three leads isolated from tarconanthus camphorates. Int j pharm sci 8(5) (2016) 71-77.
  • [19] N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, C. R. Corbeil, Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go: docking/scoring methods-a review. Br j pharm 153(1) (2008) 7–26.
  • [20] M. K. Abdel-Latif, H.R. Abd El-mageed, H.S. Mohamed, F.M. Mustafa, Study the solvation effect on 6- phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile derivatives by td- dft calculations and molecular dynamics simulations. J mol struct 1200 (2020) 127056.
  • [21] H. S. H. Mohamed, S.A. Ahmed, Reviewing of synthesis and computational studies of pyrazolo pyrimidine derivatives. J chem rev 1(3) (2019) 154–251.
  • [22] A. C. Pierce, M. jacobs, C. Stuver-Moody, Docking study yields four novel inhibitors of the protooncogene pim-1 kinase. J med chem 51(6) (2008) 1972–1975.
  • [23] N. K. Salam, T. H. Huang, B. P. Kota, M. S. Kim, Y. Li, D. E. Hibbs, Novel ppargamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study: novel ppar-γ agonists from natural products. Chem bio drug des 71(1) (2008) 57–70.
  • [24] M. H. Potashman, J. Bready, A. Coxon, T. M. Jr. DeMelfi, L. Dipietro, N. Doerr, et al, Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors. J. Med. Chem. 50 (2007) 4351−4373.
  • [25] K. Sharma, A. Shrivastava, R. N. Mehra, G. S. Deora, M. M. Alam, M. S. Zaman, et al, Synthesis of novel benzimidazole acrylonitriles for inhibition of plasmodium falciparum growth by dual target inhibition. Arch. Pharm. 351 (2018) 1700251.
  • [26] S. K. Tripathi, R. Muttineni, S. K. Singh, Extra precision docking, free energy calculation and molecular dynamics simulation studies of cdk2 inhibitors. J theor biol. 334 (2013) 87–100.
  • [27] R. A. Laskowski, M. B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51 (2011) 2778– 2786.
  • [28] N. Cabrera, S. A. Cuesta, J. R. Mora, L. Calle, E. A.Márquez, R. Kaunas, et al, In silico searching for alternative lead compounds to treat type 2 diabetes through a QSAR and molecular dynamics study. Pharmaceutics 14 (2022) 232.
  • [29] B. S. Kumar, S. Anuragh, A. K. Kammala, K. Ilango, Computer aided drug design approach to screen Phytoconstituents of Adhatoda vasica as potential inhibitors of SARS-CoV-2 Main protease enzyme. Life 12 (2022) 315.
  • [30] Y. M. Khetmalis, S. Chitti, A. U. Wunnava, B. K. Kumar, B. K. Kumar, M. M. K. Kumar, et al, Design, synthesis and anti-mycobacterial evaluation of imidazo [1, 2-a] pyridine analogues. RSC Med. Chem. 13 (2022) 327– 342.
  • [31] A. K. Maurya, N. Mishra, In silico validation of coumarin derivatives as potential inhibitors against main protease, nsp10/nsp16-methyltransferase, phosphatase and endoribonuclease of sars cov-2. J biomol struct dyn. 39(18) (2021) 7306–7321.
  • [32] P. A. Greenidge, C. Kramer, J-C. Mozziconacci, R. Wolf, M.Mm/Gbsa Binding Energy Prediction on the Pdbbind Data Set:Successes, Failures, and Directions for Further Improvement. J. Chem.Inf. Model. 53 (2013) 201−209.
  • [33] El-Helby A.-G.A., Ayyad R.R., El-Adl K., Elkady H., Phthalazine-1, 4-dione derivatives as non-competitive AMPA receptor antagonists: design, synthesis, anticonvulsant evaluation, ADMET profile and molecular docking, Molecular diversity 23(2) (2019) 283–298.
  • [34] El-Helby A.G.A., Ayyad R.R., Zayed M.F., Abulkhair H.S., Elkady H., El-Adl K., Design, synthesis, in silico ADMET profile and GABA-A docking of novel phthalazines as potent anticonvulsants, Archiv Der Pharmazie 352(5) (2019) 1800387.
  • [35] (35). Abdallah A.E., Alesawy M.S., Eissa S.I., El-Fakharany E.M., Kalaba M.H., Sharaf M.H., et al, Design and synthesis of new 4-(2-nitrophenoxy) benzamide derivatives as potential antiviral agents: Molecular modeling and in vitro antiviral screening, New Journal of Chemistry 45(36) (2021) 16557–16571.
  • [36] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, et al, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. ;49(21):6177- 96.
  • [37] R. A. Friesner ra, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J med chem. 47(7) (2004) 1739–1749.
  • [38] M. Govindarasu, S. Ganeshan, M. A. Ansari, M. N. Alomary, S. A. Alyahya, S. Alghamdi, et al, In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets, Journal of Saudi Chemical Society 25 (2021) 101319.
  • [39] S. Zhao, Y.Y. Zhu, X.Y. Wang, Y.S. Liu, Y.X. Sun, Q.J. Zhao, et al. Structural insight into the interactions between structurally similar inhibitors and SIRT6, Int J Mol Sci. 21(7) (2020).
  • [40] M. J. Waring, J. Arrowsmith, A. R. Leach, P. D. Leeson, S. Mandrell, R. M. Owen, et al, An analysis of the attrition of drug candidates from four major pharmaceutical companies, Nat. Rev. Drug Discovery, 14 (2015) 475–486.
  • [41] L. L. Ferreira, A. D. Andricopulo, ADMET modeling approaches in drug discovery, Drug discovery today, 24 (2019) 1157–1165.
There are 41 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics
Journal Section Research Article
Authors

Mazen Mohammed 0009-0002-2640-7901

Abdulmohaimen Amjed Adnan This is me 0009-0007-7798-2267

Early Pub Date April 18, 2024
Publication Date September 19, 2024
Submission Date September 6, 2023
Published in Issue Year 2024

Cite

APA Mohammed, M., & Amjed Adnan, A. (2024). In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds. Turkish Computational and Theoretical Chemistry, 8(3), 108-121. https://doi.org/10.33435/tcandtc.1355772
AMA Mohammed M, Amjed Adnan A. In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds. Turkish Comp Theo Chem (TC&TC). September 2024;8(3):108-121. doi:10.33435/tcandtc.1355772
Chicago Mohammed, Mazen, and Abdulmohaimen Amjed Adnan. “In-Silico Design, Molecular Docking, Molecular Dynamic Simulations, Molecular Mechanics With Generalised Born and Surface Area Solvation Study, and Pharmacokinetic Prediction of Novel Diclofenac As Anti-Inflammatory Compounds”. Turkish Computational and Theoretical Chemistry 8, no. 3 (September 2024): 108-21. https://doi.org/10.33435/tcandtc.1355772.
EndNote Mohammed M, Amjed Adnan A (September 1, 2024) In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds. Turkish Computational and Theoretical Chemistry 8 3 108–121.
IEEE M. Mohammed and A. Amjed Adnan, “In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 3, pp. 108–121, 2024, doi: 10.33435/tcandtc.1355772.
ISNAD Mohammed, Mazen - Amjed Adnan, Abdulmohaimen. “In-Silico Design, Molecular Docking, Molecular Dynamic Simulations, Molecular Mechanics With Generalised Born and Surface Area Solvation Study, and Pharmacokinetic Prediction of Novel Diclofenac As Anti-Inflammatory Compounds”. Turkish Computational and Theoretical Chemistry 8/3 (September 2024), 108-121. https://doi.org/10.33435/tcandtc.1355772.
JAMA Mohammed M, Amjed Adnan A. In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds. Turkish Comp Theo Chem (TC&TC). 2024;8:108–121.
MLA Mohammed, Mazen and Abdulmohaimen Amjed Adnan. “In-Silico Design, Molecular Docking, Molecular Dynamic Simulations, Molecular Mechanics With Generalised Born and Surface Area Solvation Study, and Pharmacokinetic Prediction of Novel Diclofenac As Anti-Inflammatory Compounds”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 3, 2024, pp. 108-21, doi:10.33435/tcandtc.1355772.
Vancouver Mohammed M, Amjed Adnan A. In-silico design, molecular docking, molecular dynamic simulations, Molecular mechanics with generalised Born and surface area solvation study, and pharmacokinetic prediction of novel diclofenac as anti-inflammatory compounds. Turkish Comp Theo Chem (TC&TC). 2024;8(3):108-21.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)