Research Article
BibTex RIS Cite

Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA)

Year 2024, , 17 - 35, 02.12.2024
https://doi.org/10.33435/tcandtc.1372849

Abstract

The title molecule (N-(2,4-dihydroxy-3,3-dimethylbutyryl)b-alanine), DDBBA and its derivatives were selected for theoretical investigations viz geometry optimization, ADME profiling, binding affinity using quantum-mechanical calculations and modelling simulation tools. Geometry optimization by Gaussian 09 program revealed the stability and electrophilic nature of the investigated molecules. In order to depict the charge density distributions that may be related to biological activity, the contour maps of HOMO-LUMO as well as the associated chemical descriptors such as chemical potential (µ), electronegativity (χ), electrophilicity (ω), hardness (η) and softness (σ) were explored. Utilizing molecular docking, the antiviral, antibacterial, and anticancer activities was examined. The docked molecules showed strong propensity for binding to 2HQ6 cancer protein active sites. Vit B5-CH=CF2 and VitB5-CCl3 showed lowest binding energies (-5.861 and -5.478 kcal/mol) and low inhibition constant values (1.43 M). Studies on the (NBO) natural bond orbital, the Mulliken population, and the Fukui function were all analyzed. Further, the interactions between the derivatives and other molecules were studied using Hirshfeld surface analysis.

References

  • [1] M. Hrubša,T.Siatka,I.Nejmanová, M. Vopršalová, Kujovská L. Krčmová, K.Matoušová, & OEMONOM. Biological properties of vitamins of the B-Complex, part 1: vitamins B1, B2, B3, and B5. Nutrients, 14(3) (2022) 484.
  • [2] E. Premalatha, R. Dineshraj, I. Kannan, K.S. Bhaarath, & T.K.V. Sharavanan Molecular docking study on quercetin derivatives as inhibitors of Pantothenate Synthetase (PanC) of Mycobacterium tuberculosis. Int. J. Res. Pharm. Sci, 11 (2020) 3684-3690.
  • [3] T. Sanvictores, S. Chauhan Vitamin B5 (Pantothenic Acid) [Updated 2022 Oct 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563233/
  • [4] H.M. Said Intestinal absorption of water-soluble vitamins in health and disease. The Biochemical journal, 437(3) (2011) 357–372. https://doi.org/10.1042/BJ20110326
  • [5] Y. Zhou , C.M. Park, C.W. Cho, & Y.S. Song Protective effect of pinitol against D-galactosamine-induced hepatotoxicity in rats fed on a high-fat diet. Bioscience, biotechnology, and biochemistry, 72(7) (2008)1657–1666. https://doi.org/10.1271/bbb.70473
  • [6] V.S. Slyshenkov, A.G. Moiseenok & L.Wojtczak Noxious effects of oxygen reactive species on energy-coupling processes in Ehrlich ascites tumor mitochondria and the protection by pantothenic acid. Free radical biology & medicine, 20(6) (1996) 793–800. https://doi.org/10.1016/0891-5849(95)02210-4
  • [7] H. Schittl, & N.Getoff, Radiation-induced antitumor properties of vitamin B5 (pantothenic acid) and its effect on mitomycin C activity: experiments in vitro. Oncology research, 16(8) (2007) 389–394. https://doi.org/10.3727/000000006783980919
  • [8] V.S. Slyshenkov, K. Piwocka, E. Sikora, & L. Wojtczak. Pantothenic acid protects jurkat cells against ultraviolet light-induced apoptosis. Free radical biology & medicine, 30(11) (2001) 1303–1310. https://doi.org/10.1016/s0891-5849(01)00531-7
  • [9] P.N. Moorthy, E. Hayon: One electron redox reaction of water soluble vitamins. 4. thiamin (vit.B1), biotin and pantothenic acid. J Organ Chem 42 (1997) 879-885.
  • [10] H. Schittl, R.M. Quint, N.Getoff. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions. RadiatPhysChem 76 (200) 1594-1599.
  • [11] A.M. Deghady, R.K. Hussein, A.G. Alhamzani, &A. Mera. Density functional theory and molecular docking investigations of the chemical and antibacterial activities for 1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one. Molecules, 26(12) (2021) 3631.
  • [12] S. Liu, Y. Li, W. Wei, K. Wang, L. Wang, & J. Wang. Design, synthesis, molecular docking studies and anti-HBV activity of phenylpropanoid derivatives. Chemico-Biological Interactions, 251 (2016) 1-9.
  • [13] F.F. Wang, W. Yang, Y.H. Shi, &G.W. Le. Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Chemico-biological interactions, 240 (2015) 324-335.
  • [14] F. A. Opo, M. M. Rahman, F. Ahammad, I. Ahmed, M. A. Bhuiyan, & A. M. Asiri. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific reports, 11(1) (2021) 1-17.
  • [15] G. Vistoli, A. Pedretti, B. Testa. Assessing drug-likeness–what are we missing?. Drug discovery today, 13(7-8) (2008) 285-294.
  • [16] K. H. Ibnaouf, R. K. Hussein, Elkhair, & A. O. Elzupir. Experimental and theoretical study of the structure, frontier molecular orbital, tautomerism and spectral analysis of 3-(p-substituted phenyl)-5-phenyl-1H-pyrazole. Journal of Molecular Liquids, 287 (2019) 110675.
  • [17] A. M. Farag, A. M. Fahim.Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. Journal of Molecular Structure, 1179 (2019) 304-314.
  • [18] P. Nigro, G. Pompilio, M. C. Capogrossi. Cyclophilin A: a key player for human disease. Cell death & disease, 4(10) (2013) e888.
  • [19] X. Liu, L. Sun, M. Yu, Z. Wang, C. Xu, Q. Xue, K. Zhang, X. Ye, Y. Kitamura, W. Liu. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cellular microbiology, 11(5) (2009) 730–741.
  • [20] C. Luo, H. Luo, S. Zheng, C. Gui, L. Yue, C. Yu, T. Sun, P. He, J. Chen, J. Shen, X. Luo, Y. Li, H. Liu, D. Bai, J. Shen, Y. Yang, F. Li, J. Zuo, R. Hilgenfeld, G. Pei, H. Jiang. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochemical and biophysical research communications, 321(3) (2004) 557–565.
  • [21] A. Hoerauf, C. Rascher, R. Bang, A. Pahl, W. Solbach, K. Brune, M. Röllinghoff & H. Bang. Host-cell cyclophilin is important for the intracellular replication of Leishmania major. Molecular microbiology, 24(2) (1997) 421–429.
  • [22] A. Bell, P. Monaghan, & A. P. Page. Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action. International journal for parasitology, 36(3) (2006) 261–276. https://doi.org/10.1016/j.ijpara.2005.11.003
  • [23] M. Dutta, P. Delhi, K. M. Sinha, R. Banerjee, & A. K. Datta. Lack of abundance of cytoplasmic cyclosporin A-binding protein renders free-living Leishmania donovani resistant to cyclosporin A. The Journal of biological chemistry, 276(22) (2001) 19294–19300. https://doi.org/10.1074/jbc.M009379200
  • [24] M. Berriman, & A. H. Fairlamb. Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum. The Biochemical journal, 334 (2) (1998) 437–445. https://doi.org/10.1042/bj3340437
  • [25] H. Golding, J. Aliberti, L. R. King, J. Manischewitz, J. Andersen,, J. Valenzuela, N. R. Landau, & A. Sher. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood, 102(9) (2003) 3280–3286.
  • [26] H. Yang, J. Chen, J. Yang, S. Qiao, S. Zhao, & L. Yu. Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochemical and biophysical research communications, 361(3) (2007) 763–767.
  • [27] Y. J. Qi, Q. Y. He, Y. F. Ma, Y. W. Du, G. C. Liu, Y. J. Li, G. S. Tsao, S. M. Ngai, & J. F. Chiu. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. Journal of cellular biochemistry, 104(5) (2008) 1625–1635.
  • [28] B. A. Howard, R. Furumai, M. J. Campa, Z. N. Rabbani, Z. Vujaskovic, X. F. Wang, & E. F. Patz, Jr. Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer research, 65(19) (2005) 8853–8860.
  • [29] Z. Li, X. Zhao, S. Bai, Z. Wang, L. Chen, Y. Wei, & C. Huang. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Molecular & cellular proteomics: MCP, 7(10) (2008) 1810–1823.
  • [30] S. Semba, & K. Huebner. Protein expression profiling identifies cyclophilin A as a molecular target in Fhit-mediated tumor suppression. Molecular cancer research : MCR, 4(8) (2006) 529–538. https://doi.org/10.1158/1541-7786.MCR-06-0060 (Retraction published Mol Cancer Res. 2021 Apr;19(4):740).
  • [31] K. J. Choi, Y. J. Piao, M. J. Lim, J. H. Kim, J. Ha, W. Choe & S. S. Kim. Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer research, 67(8) (2007) 3654–3662.
  • [32] C. C. Calhoun, Y. C. Lu, J. Song & R. Chiu. Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype. Molecular and cellular biochemistry, 320 (1-2) (2009) 35–43.
  • [33] D. Cecconi, M. Donadelli, A. Scarpa, A. Milli, M. Palmieri, M. Hamdan, L. B. Areces, J. Rappsilber & P. G. Righetti. Proteomic analysis of pancreatic ductal carcinoma cells after combined treatment with gemcitabine and trichostatin A. Journal of proteome research, 4(6) (2005) 1909–1916.
  • [34] J. Lou, N. Fatima, Z. Xiao, S. Stauffer, G. Smythers, P. Greenwald & I. U. Ali. Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer epidemiology, biomarkers &prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 15(9) (2006) 1598–1606.
  • [35] X. Han, S. H. Yoon, Y. Ding, T. G. Choi, W. J. Choi., H. Kim, Y. J. Kim, Y. B. Huh, J. Ha & S. S. Kim. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncology reports, 23(4) (2010) 1053–1062.
  • [36] R. H. Hertwig, & W. Koch. On the parameterization of the local correlation functional. What is Becke-3-LYP?. Chemical Physics Letters, 268 (5-6) (1997) 345-351.
  • [37] K. Raghavachari. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. Theoretical Chemistry Accounts, 103(3) (2000) 361-363.
  • [38] M. J. E. A. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman & A. D. Fox. (2009). Gaussian 09, revision D. 01.
  • [39] R. Dennington, T. Keith, & J. G. Millam. (2009). Ver. 5. Semichem Inc.: Shawnee Mission, KS, USA.
  • [40] R. G. Parr. Density functional theory of atoms and molecules. In Horizons of quantum chemistry (pp. 5-15). (1980) Springer, Dordrecht.
  • [41] W. Yang, & R. G. Parr. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82(20) (1985) 6723-6726.
  • [42] R. G. Parr, R. A. Donnelly, M. Levy & W. E. Palke. Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68(8) (1978) 3801-3807.
  • [43] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, & A. J. Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16) (2009) 2785-2791.
  • [44] D. S. Biovia. Discovery studio modeling environment (2017).
  • [45] A. Daina, O. Michielin, & V. Zoete. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1) (2017) 1-13.
  • [46] R. K. Hussein, H. M. Elkhair, A. O. Elzupir, & K. H. Ibnaouf. Spectral, Structural, Stability Characteristics and Frontier Molecular Orbitals of tri-n-butyl phosphate (tbp) and its Degradation Products: DFT calculations. J. Ovonic Res, 17 (2021) 23-30.
  • [47] T. Tsuneda, J. W. Song, S. Suzuki, & K. Hirao. On Koopmans’ theorem in density functional theory. The Journal of chemical physics, 133(17) (2010) 174101.
  • [48] T. L. Davis, J. R. Walker, V. Campagna-Slater, P. J. Finerty Jr, R. Paramanathan, et al. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases. PLoS Biol 8(7) (2010) e1000439.
  • [49] A. Mohebbi, A. Mirarab, R. Shaddel, M. Shafaei Fallah, A. Memarian. Molecular Dynamic Simulation and Docking of Cyclophilin A Mutants with its Potential Inhibitors. Journal of Clinical and Basic Research, (2) (2021) 26-41
  • [50] A. Mohebbi, A. Mirarab, R. Shaddel, M. Shafaei Fallah, A. Memarian. Molecular Dynamic Simulation and Docking of Cyclophilin A Mutants with its Potential Inhibitors. Journal of Clinical and Basic Research, (2) (2021) 26-41
  • [51] B. C. Doak, & J. Kihlberg. Drug discovery beyond the rule of 5-Opportunities and challenges. Expert Opinion on Drug Discovery, 12(2) (2017) 115-119.
  • [52] Q. S. Obu, H. Louis, J. O. Odey, I. J. Eko, S. Abdullahi, T. N. Ntui, & O. E. Offiong. Synthesis, spectra (FT-IR, NMR) investigations, DFT study, in silico ADMET and Molecular docking analysis of 2-amino-4-(4-aminophenyl) thiophene-3-carbonitrile as a potential anti-tubercular agent. Journal of Molecular Structure, 1244 (2021) 130880.
  • [53] I. Salim Meeran, V. Baskar, S. Syed Tajudeen, T. K. Shabeer. Design, ADME profiling, and molecular docking simulation of new isoniazid-Schiff base analogs as MtKasB inhibitors. Asian J. Res. Chem. Pharmaceut. Sci., 6(1) (2018) 20–34.
  • [54] A. Avdeef. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET and DMPK, 8(1) (2020) 29-77.
  • [55] C. P. Chen, C. C. Chen, C. W. Huang, & Y. C. Chang. Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules, 23(4) (2018) 911.
  • [56] M. Gerardo-Ramírez, F. L. Keggenhoff, V. Giam, D. Becker, M. Groth, N. Hartmann, & M. Hartmann. CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. International Journal of Molecular Sciences, 23(15) (2022) 8616.
  • [57] C. Kwok, P. A. Weller, S. Guioli, J. W. Foster, S. Mansour, O. Zuffardi, H. H. Punnett, M. A. Dominguez-Steglich, J. D. Brook, I. D. Young, et al. Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 57(5) (1995) 1028-36. PMID: 7485151; PMCID: PMC1801368.
  • [58] M. Dean, K. Moitra, & R. Allikmets. The human ATP‐binding cassette (ABC) transporter superfamily. Human Mutation, 43(9) (2022) 1162-1182.
  • [59] J. Yu, Z. Zhou, J. Tay-Sontheimer, R. H. Levy, & I. Ragueneau-Majlessi. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. Journal of pharmaceutical sciences, 106(9) (2017) 2312-2325.
  • [60] S. Wolking, E. Schaeffeler, H. Lerche, M. Schwab & A. T. Nies. Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clinical pharmacokinetics, 54(7) (2015) 709-735.
  • [61] R. Meenashi, K. Selvaraju, A. D. Stephen & C. Jelsch. Theoretical crystal structure prediction of aminosalicylic acid: Charge density topological and electrostatic analyses. Journal of Molecular Structure, 1213 (2020) 128139.
  • [62] L. S. Ghomi, M. Behzad, A. Tarahhomi & A. Arab. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper (II) and nickel (II) Schiff base complexes derived from meso-1, 2-diphenyl-1, 2-ethylenediamine. Journal of Molecular Structure, 1150 (2017) 214-226.
  • [63] M. A. Spackman & J. J. McKinnon. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66) (2002) 378-392.
  • [64] P. Rajesh, P. Kandan, S. Sathish, A. Manikandan, S. Gunasekaran, T. Gnanasambandan, & S. B. Abirami. Vibrational spectroscopic, UV–Vis, molecular structure and NBO analysis of Rabeprazole. Journal of Molecular Structure, 1137 (2017) 277-291.
Year 2024, , 17 - 35, 02.12.2024
https://doi.org/10.33435/tcandtc.1372849

Abstract

References

  • [1] M. Hrubša,T.Siatka,I.Nejmanová, M. Vopršalová, Kujovská L. Krčmová, K.Matoušová, & OEMONOM. Biological properties of vitamins of the B-Complex, part 1: vitamins B1, B2, B3, and B5. Nutrients, 14(3) (2022) 484.
  • [2] E. Premalatha, R. Dineshraj, I. Kannan, K.S. Bhaarath, & T.K.V. Sharavanan Molecular docking study on quercetin derivatives as inhibitors of Pantothenate Synthetase (PanC) of Mycobacterium tuberculosis. Int. J. Res. Pharm. Sci, 11 (2020) 3684-3690.
  • [3] T. Sanvictores, S. Chauhan Vitamin B5 (Pantothenic Acid) [Updated 2022 Oct 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563233/
  • [4] H.M. Said Intestinal absorption of water-soluble vitamins in health and disease. The Biochemical journal, 437(3) (2011) 357–372. https://doi.org/10.1042/BJ20110326
  • [5] Y. Zhou , C.M. Park, C.W. Cho, & Y.S. Song Protective effect of pinitol against D-galactosamine-induced hepatotoxicity in rats fed on a high-fat diet. Bioscience, biotechnology, and biochemistry, 72(7) (2008)1657–1666. https://doi.org/10.1271/bbb.70473
  • [6] V.S. Slyshenkov, A.G. Moiseenok & L.Wojtczak Noxious effects of oxygen reactive species on energy-coupling processes in Ehrlich ascites tumor mitochondria and the protection by pantothenic acid. Free radical biology & medicine, 20(6) (1996) 793–800. https://doi.org/10.1016/0891-5849(95)02210-4
  • [7] H. Schittl, & N.Getoff, Radiation-induced antitumor properties of vitamin B5 (pantothenic acid) and its effect on mitomycin C activity: experiments in vitro. Oncology research, 16(8) (2007) 389–394. https://doi.org/10.3727/000000006783980919
  • [8] V.S. Slyshenkov, K. Piwocka, E. Sikora, & L. Wojtczak. Pantothenic acid protects jurkat cells against ultraviolet light-induced apoptosis. Free radical biology & medicine, 30(11) (2001) 1303–1310. https://doi.org/10.1016/s0891-5849(01)00531-7
  • [9] P.N. Moorthy, E. Hayon: One electron redox reaction of water soluble vitamins. 4. thiamin (vit.B1), biotin and pantothenic acid. J Organ Chem 42 (1997) 879-885.
  • [10] H. Schittl, R.M. Quint, N.Getoff. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions. RadiatPhysChem 76 (200) 1594-1599.
  • [11] A.M. Deghady, R.K. Hussein, A.G. Alhamzani, &A. Mera. Density functional theory and molecular docking investigations of the chemical and antibacterial activities for 1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one. Molecules, 26(12) (2021) 3631.
  • [12] S. Liu, Y. Li, W. Wei, K. Wang, L. Wang, & J. Wang. Design, synthesis, molecular docking studies and anti-HBV activity of phenylpropanoid derivatives. Chemico-Biological Interactions, 251 (2016) 1-9.
  • [13] F.F. Wang, W. Yang, Y.H. Shi, &G.W. Le. Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Chemico-biological interactions, 240 (2015) 324-335.
  • [14] F. A. Opo, M. M. Rahman, F. Ahammad, I. Ahmed, M. A. Bhuiyan, & A. M. Asiri. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific reports, 11(1) (2021) 1-17.
  • [15] G. Vistoli, A. Pedretti, B. Testa. Assessing drug-likeness–what are we missing?. Drug discovery today, 13(7-8) (2008) 285-294.
  • [16] K. H. Ibnaouf, R. K. Hussein, Elkhair, & A. O. Elzupir. Experimental and theoretical study of the structure, frontier molecular orbital, tautomerism and spectral analysis of 3-(p-substituted phenyl)-5-phenyl-1H-pyrazole. Journal of Molecular Liquids, 287 (2019) 110675.
  • [17] A. M. Farag, A. M. Fahim.Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. Journal of Molecular Structure, 1179 (2019) 304-314.
  • [18] P. Nigro, G. Pompilio, M. C. Capogrossi. Cyclophilin A: a key player for human disease. Cell death & disease, 4(10) (2013) e888.
  • [19] X. Liu, L. Sun, M. Yu, Z. Wang, C. Xu, Q. Xue, K. Zhang, X. Ye, Y. Kitamura, W. Liu. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cellular microbiology, 11(5) (2009) 730–741.
  • [20] C. Luo, H. Luo, S. Zheng, C. Gui, L. Yue, C. Yu, T. Sun, P. He, J. Chen, J. Shen, X. Luo, Y. Li, H. Liu, D. Bai, J. Shen, Y. Yang, F. Li, J. Zuo, R. Hilgenfeld, G. Pei, H. Jiang. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochemical and biophysical research communications, 321(3) (2004) 557–565.
  • [21] A. Hoerauf, C. Rascher, R. Bang, A. Pahl, W. Solbach, K. Brune, M. Röllinghoff & H. Bang. Host-cell cyclophilin is important for the intracellular replication of Leishmania major. Molecular microbiology, 24(2) (1997) 421–429.
  • [22] A. Bell, P. Monaghan, & A. P. Page. Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action. International journal for parasitology, 36(3) (2006) 261–276. https://doi.org/10.1016/j.ijpara.2005.11.003
  • [23] M. Dutta, P. Delhi, K. M. Sinha, R. Banerjee, & A. K. Datta. Lack of abundance of cytoplasmic cyclosporin A-binding protein renders free-living Leishmania donovani resistant to cyclosporin A. The Journal of biological chemistry, 276(22) (2001) 19294–19300. https://doi.org/10.1074/jbc.M009379200
  • [24] M. Berriman, & A. H. Fairlamb. Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum. The Biochemical journal, 334 (2) (1998) 437–445. https://doi.org/10.1042/bj3340437
  • [25] H. Golding, J. Aliberti, L. R. King, J. Manischewitz, J. Andersen,, J. Valenzuela, N. R. Landau, & A. Sher. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood, 102(9) (2003) 3280–3286.
  • [26] H. Yang, J. Chen, J. Yang, S. Qiao, S. Zhao, & L. Yu. Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochemical and biophysical research communications, 361(3) (2007) 763–767.
  • [27] Y. J. Qi, Q. Y. He, Y. F. Ma, Y. W. Du, G. C. Liu, Y. J. Li, G. S. Tsao, S. M. Ngai, & J. F. Chiu. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. Journal of cellular biochemistry, 104(5) (2008) 1625–1635.
  • [28] B. A. Howard, R. Furumai, M. J. Campa, Z. N. Rabbani, Z. Vujaskovic, X. F. Wang, & E. F. Patz, Jr. Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer research, 65(19) (2005) 8853–8860.
  • [29] Z. Li, X. Zhao, S. Bai, Z. Wang, L. Chen, Y. Wei, & C. Huang. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Molecular & cellular proteomics: MCP, 7(10) (2008) 1810–1823.
  • [30] S. Semba, & K. Huebner. Protein expression profiling identifies cyclophilin A as a molecular target in Fhit-mediated tumor suppression. Molecular cancer research : MCR, 4(8) (2006) 529–538. https://doi.org/10.1158/1541-7786.MCR-06-0060 (Retraction published Mol Cancer Res. 2021 Apr;19(4):740).
  • [31] K. J. Choi, Y. J. Piao, M. J. Lim, J. H. Kim, J. Ha, W. Choe & S. S. Kim. Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer research, 67(8) (2007) 3654–3662.
  • [32] C. C. Calhoun, Y. C. Lu, J. Song & R. Chiu. Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype. Molecular and cellular biochemistry, 320 (1-2) (2009) 35–43.
  • [33] D. Cecconi, M. Donadelli, A. Scarpa, A. Milli, M. Palmieri, M. Hamdan, L. B. Areces, J. Rappsilber & P. G. Righetti. Proteomic analysis of pancreatic ductal carcinoma cells after combined treatment with gemcitabine and trichostatin A. Journal of proteome research, 4(6) (2005) 1909–1916.
  • [34] J. Lou, N. Fatima, Z. Xiao, S. Stauffer, G. Smythers, P. Greenwald & I. U. Ali. Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer epidemiology, biomarkers &prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 15(9) (2006) 1598–1606.
  • [35] X. Han, S. H. Yoon, Y. Ding, T. G. Choi, W. J. Choi., H. Kim, Y. J. Kim, Y. B. Huh, J. Ha & S. S. Kim. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncology reports, 23(4) (2010) 1053–1062.
  • [36] R. H. Hertwig, & W. Koch. On the parameterization of the local correlation functional. What is Becke-3-LYP?. Chemical Physics Letters, 268 (5-6) (1997) 345-351.
  • [37] K. Raghavachari. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. Theoretical Chemistry Accounts, 103(3) (2000) 361-363.
  • [38] M. J. E. A. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman & A. D. Fox. (2009). Gaussian 09, revision D. 01.
  • [39] R. Dennington, T. Keith, & J. G. Millam. (2009). Ver. 5. Semichem Inc.: Shawnee Mission, KS, USA.
  • [40] R. G. Parr. Density functional theory of atoms and molecules. In Horizons of quantum chemistry (pp. 5-15). (1980) Springer, Dordrecht.
  • [41] W. Yang, & R. G. Parr. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82(20) (1985) 6723-6726.
  • [42] R. G. Parr, R. A. Donnelly, M. Levy & W. E. Palke. Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68(8) (1978) 3801-3807.
  • [43] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, & A. J. Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16) (2009) 2785-2791.
  • [44] D. S. Biovia. Discovery studio modeling environment (2017).
  • [45] A. Daina, O. Michielin, & V. Zoete. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1) (2017) 1-13.
  • [46] R. K. Hussein, H. M. Elkhair, A. O. Elzupir, & K. H. Ibnaouf. Spectral, Structural, Stability Characteristics and Frontier Molecular Orbitals of tri-n-butyl phosphate (tbp) and its Degradation Products: DFT calculations. J. Ovonic Res, 17 (2021) 23-30.
  • [47] T. Tsuneda, J. W. Song, S. Suzuki, & K. Hirao. On Koopmans’ theorem in density functional theory. The Journal of chemical physics, 133(17) (2010) 174101.
  • [48] T. L. Davis, J. R. Walker, V. Campagna-Slater, P. J. Finerty Jr, R. Paramanathan, et al. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases. PLoS Biol 8(7) (2010) e1000439.
  • [49] A. Mohebbi, A. Mirarab, R. Shaddel, M. Shafaei Fallah, A. Memarian. Molecular Dynamic Simulation and Docking of Cyclophilin A Mutants with its Potential Inhibitors. Journal of Clinical and Basic Research, (2) (2021) 26-41
  • [50] A. Mohebbi, A. Mirarab, R. Shaddel, M. Shafaei Fallah, A. Memarian. Molecular Dynamic Simulation and Docking of Cyclophilin A Mutants with its Potential Inhibitors. Journal of Clinical and Basic Research, (2) (2021) 26-41
  • [51] B. C. Doak, & J. Kihlberg. Drug discovery beyond the rule of 5-Opportunities and challenges. Expert Opinion on Drug Discovery, 12(2) (2017) 115-119.
  • [52] Q. S. Obu, H. Louis, J. O. Odey, I. J. Eko, S. Abdullahi, T. N. Ntui, & O. E. Offiong. Synthesis, spectra (FT-IR, NMR) investigations, DFT study, in silico ADMET and Molecular docking analysis of 2-amino-4-(4-aminophenyl) thiophene-3-carbonitrile as a potential anti-tubercular agent. Journal of Molecular Structure, 1244 (2021) 130880.
  • [53] I. Salim Meeran, V. Baskar, S. Syed Tajudeen, T. K. Shabeer. Design, ADME profiling, and molecular docking simulation of new isoniazid-Schiff base analogs as MtKasB inhibitors. Asian J. Res. Chem. Pharmaceut. Sci., 6(1) (2018) 20–34.
  • [54] A. Avdeef. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET and DMPK, 8(1) (2020) 29-77.
  • [55] C. P. Chen, C. C. Chen, C. W. Huang, & Y. C. Chang. Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules, 23(4) (2018) 911.
  • [56] M. Gerardo-Ramírez, F. L. Keggenhoff, V. Giam, D. Becker, M. Groth, N. Hartmann, & M. Hartmann. CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. International Journal of Molecular Sciences, 23(15) (2022) 8616.
  • [57] C. Kwok, P. A. Weller, S. Guioli, J. W. Foster, S. Mansour, O. Zuffardi, H. H. Punnett, M. A. Dominguez-Steglich, J. D. Brook, I. D. Young, et al. Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 57(5) (1995) 1028-36. PMID: 7485151; PMCID: PMC1801368.
  • [58] M. Dean, K. Moitra, & R. Allikmets. The human ATP‐binding cassette (ABC) transporter superfamily. Human Mutation, 43(9) (2022) 1162-1182.
  • [59] J. Yu, Z. Zhou, J. Tay-Sontheimer, R. H. Levy, & I. Ragueneau-Majlessi. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. Journal of pharmaceutical sciences, 106(9) (2017) 2312-2325.
  • [60] S. Wolking, E. Schaeffeler, H. Lerche, M. Schwab & A. T. Nies. Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clinical pharmacokinetics, 54(7) (2015) 709-735.
  • [61] R. Meenashi, K. Selvaraju, A. D. Stephen & C. Jelsch. Theoretical crystal structure prediction of aminosalicylic acid: Charge density topological and electrostatic analyses. Journal of Molecular Structure, 1213 (2020) 128139.
  • [62] L. S. Ghomi, M. Behzad, A. Tarahhomi & A. Arab. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper (II) and nickel (II) Schiff base complexes derived from meso-1, 2-diphenyl-1, 2-ethylenediamine. Journal of Molecular Structure, 1150 (2017) 214-226.
  • [63] M. A. Spackman & J. J. McKinnon. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66) (2002) 378-392.
  • [64] P. Rajesh, P. Kandan, S. Sathish, A. Manikandan, S. Gunasekaran, T. Gnanasambandan, & S. B. Abirami. Vibrational spectroscopic, UV–Vis, molecular structure and NBO analysis of Rabeprazole. Journal of Molecular Structure, 1137 (2017) 277-291.
There are 64 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Jamal Sayeedha Tabassum S 0000-0001-6373-7980

Mohamed Imran Predhanekar 0000-0002-5556-4116

Shabeer T. K. 0000-0001-7790-3388

Attar Kubaib 0000-0003-0909-0391

Salım Meeran I 0000-0002-1635-4175

Early Pub Date May 21, 2024
Publication Date December 2, 2024
Submission Date October 9, 2023
Published in Issue Year 2024

Cite

APA Tabassum S, J. S., Predhanekar, M. I., T. K., S., Kubaib, A., et al. (2024). Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA). Turkish Computational and Theoretical Chemistry, 8(4), 17-35. https://doi.org/10.33435/tcandtc.1372849
AMA Tabassum S JS, Predhanekar MI, T. K. S, Kubaib A, Meeran I S. Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA). Turkish Comp Theo Chem (TC&TC). December 2024;8(4):17-35. doi:10.33435/tcandtc.1372849
Chicago Tabassum S, Jamal Sayeedha, Mohamed Imran Predhanekar, Shabeer T. K., Attar Kubaib, and Salım Meeran I. “Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA)”. Turkish Computational and Theoretical Chemistry 8, no. 4 (December 2024): 17-35. https://doi.org/10.33435/tcandtc.1372849.
EndNote Tabassum S JS, Predhanekar MI, T. K. S, Kubaib A, Meeran I S (December 1, 2024) Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA). Turkish Computational and Theoretical Chemistry 8 4 17–35.
IEEE J. S. Tabassum S, M. I. Predhanekar, S. T. K., A. Kubaib, and S. Meeran I, “Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA)”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 4, pp. 17–35, 2024, doi: 10.33435/tcandtc.1372849.
ISNAD Tabassum S, Jamal Sayeedha et al. “Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA)”. Turkish Computational and Theoretical Chemistry 8/4 (December 2024), 17-35. https://doi.org/10.33435/tcandtc.1372849.
JAMA Tabassum S JS, Predhanekar MI, T. K. S, Kubaib A, Meeran I S. Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA). Turkish Comp Theo Chem (TC&TC). 2024;8:17–35.
MLA Tabassum S, Jamal Sayeedha et al. “Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA)”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 4, 2024, pp. 17-35, doi:10.33435/tcandtc.1372849.
Vancouver Tabassum S JS, Predhanekar MI, T. K. S, Kubaib A, Meeran I S. Desing and In Silico Validation of Vitamin B5 and Its Derivatives As A Potential Target Against Cyclophilin A (CyPA). Turkish Comp Theo Chem (TC&TC). 2024;8(4):17-35.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)