Research Article
BibTex RIS Cite
Year 2024, , 62 - 79, 21.05.2024
https://doi.org/10.33435/tcandtc.1399682

Abstract

References

  • [1] M. AlKhars, F. Miah, H. Qudrat-Ullah, A. Kayal, A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries, Sustainability. 12 (2020) 3845.
  • [1] M. AlKhars, F. Miah, H. Qudrat-Ullah, A. Kayal, A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries, Sustainability. 12 (2020) 3845.
  • [2] A. Karki, S. Phuyal, D. Tuladhar, S. Basnet, B. Shrestha, Status of Pure Electric Vehicle Power Train Technology and Future Prospects, ASI. 3 (2020) 35.
  • [2] A. Karki, S. Phuyal, D. Tuladhar, S. Basnet, B. Shrestha, Status of Pure Electric Vehicle Power Train Technology and Future Prospects, ASI. 3 (2020) 35.
  • [3] X. Pan, H. Wang, L. Wang, W. Chen, Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals, Energy. 155 (2018) 853–864.
  • [3] X. Pan, H. Wang, L. Wang, W. Chen, Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals, Energy. 155 (2018) 853–864.
  • [4] G. Xu, R. Si, J. Liu, L. Zhang, X. Gong, R. Gao, B. Liu, J. Zhang, Directed self-assembly pathways of three-dimensional Pt/Pd nanocrystal superlattice electrocatalysts for enhanced methanol oxidation reaction, J. Mater. Chem. A. 6 (2018) 12759–12767.
  • [4] G. Xu, R. Si, J. Liu, L. Zhang, X. Gong, R. Gao, B. Liu, J. Zhang, Directed self-assembly pathways of three-dimensional Pt/Pd nanocrystal superlattice electrocatalysts for enhanced methanol oxidation reaction, J. Mater. Chem. A. 6 (2018) 12759–12767.
  • [5] S.S. Munjewar, S.B. Thombre, Effect of current collector roughness on performance of passive direct methanol fuel cell, Renew. Energy 138 (2019) 272–283.
  • [5] S.S. Munjewar, S.B. Thombre, Effect of current collector roughness on performance of passive direct methanol fuel cell, Renew. Energy 138 (2019) 272–283.
  • [6] H. Li, Q. Fu, L. Xu, S. Ma, Y. Zheng, X. Liu, S. Yu, Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis, Energy Environ. Sci. 10 (2017) 1751–1756.
  • [6] H. Li, Q. Fu, L. Xu, S. Ma, Y. Zheng, X. Liu, S. Yu, Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis, Energy Environ. Sci. 10 (2017) 1751–1756.
  • [7] S. Şen, F. Şen, G. Gökağaç, Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation, Phys. Chem. Chem. Phys. 13 (2011) 6784.
  • [7] S. Şen, F. Şen, G. Gökağaç, Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation, Phys. Chem. Chem. Phys. 13 (2011) 6784.
  • [8] F. Şen, G. Gökaǧaç, Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol, Energy Fuels. 22 (2008) 1858–1864.
  • [8] F. Şen, G. Gökaǧaç, Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol, Energy Fuels. 22 (2008) 1858–1864.
  • [9] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, International Journal of Hydrogen Energy. 42 (2017) 13061–13069.
  • [9] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, International Journal of Hydrogen Energy. 42 (2017) 13061–13069.
  • [10] S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, Methanol Oxidation at Pt−Cu, Pt−Ni, and Pt−Co Electrode Coatings Prepared by a Galvanic Replacement Process, J. Phys. Chem. C. 114 (2010) 5217–5223.
  • [10] S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, Methanol Oxidation at Pt−Cu, Pt−Ni, and Pt−Co Electrode Coatings Prepared by a Galvanic Replacement Process, J. Phys. Chem. C. 114 (2010) 5217–5223.
  • [11] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531.
  • [11] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531.
  • [12] L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt−Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties, Nano Lett. 9 (2009) 4352–4358.
  • [12] L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt−Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties, Nano Lett. 9 (2009) 4352–4358.
  • [13] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, F. Şen, Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation, International Journal of Hydrogen Energy. 41 (2016) 3093–3101.
  • [13] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, F. Şen, Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation, International Journal of Hydrogen Energy. 41 (2016) 3093–3101.
  • [14] F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Electrocatalysis for the direct alcohol fuel cell, Top Catal. 40 (2006) 111–121.
  • [14] F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Electrocatalysis for the direct alcohol fuel cell, Top Catal. 40 (2006) 111–121.
  • [15] Z. Yang, Y. Shi, X. Wang, G. Zhang, P. Cui, Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell, Journal of Power Sources. 431 (2019) 125–134.
  • [15] Z. Yang, Y. Shi, X. Wang, G. Zhang, P. Cui, Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell, Journal of Power Sources. 431 (2019) 125–134.
  • [16] J.C. Park, C.H. Choi, Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance, Journal of Power Sources. 358 (2017) 76–84.
  • [16] J.C. Park, C.H. Choi, Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance, Journal of Power Sources. 358 (2017) 76–84.
  • [17] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells, Journal of Power Sources. 160 (2006) 957–968.
  • [17] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells, Journal of Power Sources. 160 (2006) 957–968.
  • [18] T. Hyeon, S. Han, Y.-E. Sung, K.-W. Park, Y.-W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. 115 (2003) 4488–4492.
  • [18] T. Hyeon, S. Han, Y.-E. Sung, K.-W. Park, Y.-W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. 115 (2003) 4488–4492.
  • [19] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, J. Phys. Chem. B. 109 (2005) 22212–22216.
  • [19] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, J. Phys. Chem. B. 109 (2005) 22212–22216.
  • [20] F. Şen, G. Gökağaç, S. Şen, High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, J Nanopart Res. 15 (2013) 1979.
  • [20] F. Şen, G. Gökağaç, S. Şen, High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, J Nanopart Res. 15 (2013) 1979.
  • [21] J. Qi, S. Yan, Q. Jiang, Y. Liu, G. Sun, Improving the activity and stability of a Pt/C electrocatalyst for direct methanol fuel cells, Carbon. 48 (2010) 163–169.
  • [21] J. Qi, S. Yan, Q. Jiang, Y. Liu, G. Sun, Improving the activity and stability of a Pt/C electrocatalyst for direct methanol fuel cells, Carbon. 48 (2010) 163–169.
  • [22] E. Erken, İ. Esirden, M. Kaya, F. Sen, A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation, RSC Adv. 5 (2015) 68558–68564.
  • [22] E. Erken, İ. Esirden, M. Kaya, F. Sen, A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation, RSC Adv. 5 (2015) 68558–68564.
  • [23] C. Li, H. Tan, J. Lin, X. Luo, S. Wang, J. You, Y.-M. Kang, Y. Bando, Y. Yamauchi, J. Kim, Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction, Nano Today. 21 (2018) 91–105.
  • [23] C. Li, H. Tan, J. Lin, X. Luo, S. Wang, J. You, Y.-M. Kang, Y. Bando, Y. Yamauchi, J. Kim, Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction, Nano Today. 21 (2018) 91–105.
  • [24] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [24] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [25] H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K.C.W. Wu, Y. Yamauchi, Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt-Ru Particles with Tunable Shell Thicknesses, Small. 9 (2013) 1047–1051.
  • [25] H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K.C.W. Wu, Y. Yamauchi, Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt-Ru Particles with Tunable Shell Thicknesses, Small. 9 (2013) 1047–1051.
  • [26] C. Li, M. Iqbal, B. Jiang, Z. Wang, J. Kim, A.K. Nanjundan, A.E. Whitten, K. Wood, Y. Yamauchi, Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles, Chem. Sci. 10 (2019) 4054–4061.
  • [26] C. Li, M. Iqbal, B. Jiang, Z. Wang, J. Kim, A.K. Nanjundan, A.E. Whitten, K. Wood, Y. Yamauchi, Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles, Chem. Sci. 10 (2019) 4054–4061.
  • [27] H. Ataee-Esfahani, L. Wang, Y. Yamauchi, Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell, Chem. Commun. 46 (2010) 3684.
  • [27] H. Ataee-Esfahani, L. Wang, Y. Yamauchi, Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell, Chem. Commun. 46 (2010) 3684.
  • [28] E. Kuyuldar, H. Burhan, A. Şavk, B. Güven, C. Özdemir, S. Şahin, A. Khan, F. Şen, Enhanced Electrocatalytic Activity and Durability of PtRu Nanoparticles Decorated on rGO Material for Ethanol Oxidation Reaction, in: A. Khan, M. Jawaid, B. Neppolian, A.M. Asiri (Eds.), Graphene Functionalization Strategies, Springer Singapore, Singapore, 2019: pp. 389–398.
  • [28] E. Kuyuldar, H. Burhan, A. Şavk, B. Güven, C. Özdemir, S. Şahin, A. Khan, F. Şen, Enhanced Electrocatalytic Activity and Durability of PtRu Nanoparticles Decorated on rGO Material for Ethanol Oxidation Reaction, in: A. Khan, M. Jawaid, B. Neppolian, A.M. Asiri (Eds.), Graphene Functionalization Strategies, Springer Singapore, Singapore, 2019: pp. 389–398.
  • [29] S. Stevanović, D. Tripković, A. G. Wohlmuther, J. Rogan, U. Lačnjevac, V. Jovanović, Carbon Supported PtSn versus PtSnO2 Catalysts in Methanol Oxidation, Int. J. Electrochem. Sci. 16 (2021) 1-16.
  • [29] S. Stevanović, D. Tripković, A. G. Wohlmuther, J. Rogan, U. Lačnjevac, V. Jovanović, Carbon Supported PtSn versus PtSnO2 Catalysts in Methanol Oxidation, Int. J. Electrochem. Sci. 16 (2021) 1-16.
  • [30] H. Tian, Y. Yu, Q. Wang, J. Li, P. Rao, R. Li, Y. Du, C. Jia, J. Luo, P. Deng, Y. Shen, X. Tian, Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction, International Journal of Hydrogen Energy. 46 (2021) 31202–31215.
  • [30] H. Tian, Y. Yu, Q. Wang, J. Li, P. Rao, R. Li, Y. Du, C. Jia, J. Luo, P. Deng, Y. Shen, X. Tian, Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction, International Journal of Hydrogen Energy. 46 (2021) 31202–31215.
  • [31] L. Chen, L. Zhou, H. Lu, Y. Zhou, J. Huang, J. Wang, Y. Wang, X. Yuan, Y. Yao, Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction, Chem. Commun. 56 (2020) 9138–9141.
  • [31] L. Chen, L. Zhou, H. Lu, Y. Zhou, J. Huang, J. Wang, Y. Wang, X. Yuan, Y. Yao, Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction, Chem. Commun. 56 (2020) 9138–9141.
  • [32] Q. Lv, X. Ren, L. Liu, W. Guan, A. Liu, Theoretical investigation of methanol oxidation on Pt and PtNi catalysts, Ionics. 26 (2020) 1325–1336.
  • [32] Q. Lv, X. Ren, L. Liu, W. Guan, A. Liu, Theoretical investigation of methanol oxidation on Pt and PtNi catalysts, Ionics. 26 (2020) 1325–1336.
  • [33] G. You, J. Jiang, M. Li, L. Li, D. Tang, J. Zhang, X.C. Zeng, R. He, PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?, ACS Catal. 8 (2018) 132–143.
  • [33] G. You, J. Jiang, M. Li, L. Li, D. Tang, J. Zhang, X.C. Zeng, R. He, PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?, ACS Catal. 8 (2018) 132–143.
  • [34] P. Wang, H. Cui, C. Wang, Ultrathin PtMo-CeO hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation, Chemical Engineering Journal. 429 (2022) 132435.
  • [34] P. Wang, H. Cui, C. Wang, Ultrathin PtMo-CeO hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation, Chemical Engineering Journal. 429 (2022) 132435.
  • [35] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [35] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [36] E. Jimenez-Izal, J.-Y. Liu, A.N. Alexandrova, Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation, Journal of Catalysis. 374 (2019) 93–100.
  • [36] E. Jimenez-Izal, J.-Y. Liu, A.N. Alexandrova, Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation, Journal of Catalysis. 374 (2019) 93–100.
  • [37] A. Ugartemendia, K. Peeters, P. Ferrari, A. Cózar, J.M. Mercero, E. Janssens, E. Jimenez‐Izal, Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning, ChemPhysChem. 22 (2021) 1603–1610.
  • [37] A. Ugartemendia, K. Peeters, P. Ferrari, A. Cózar, J.M. Mercero, E. Janssens, E. Jimenez‐Izal, Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning, ChemPhysChem. 22 (2021) 1603–1610.
  • [38] N.S. Veizaga, V.I. Rodriguez, M. Bruno, S.R. de Miguel, The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells, Electrocatalysis. 10 (2019) 125–133.
  • [38] N.S. Veizaga, V.I. Rodriguez, M. Bruno, S.R. de Miguel, The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells, Electrocatalysis. 10 (2019) 125–133.
  • [39] N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC, International Journal of Hydrogen Energy. 39 (2014) 8728–8737.
  • [39] N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC, International Journal of Hydrogen Energy. 39 (2014) 8728–8737.
  • [40] B. Delley, From molecules to solids with the DMol3 approach, The Journal of Chemical Physics. 113 (2000) 7756–7764.
  • [40] B. Delley, From molecules to solids with the DMol3 approach, The Journal of Chemical Physics. 113 (2000) 7756–7764.
  • [41] B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics. 92 (1990) 508–517.
  • [41] B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics. 92 (1990) 508–517.
  • [42] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
  • [42] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
  • [43] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.
  • [43] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.
  • [44] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
  • [44] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
  • [45] S. Grimme, Density functional theory with London dispersion corrections, WIREs Comput Mol Sci. 1 (2011) 211–228.
  • [45] S. Grimme, Density functional theory with London dispersion corrections, WIREs Comput Mol Sci. 1 (2011) 211–228.
  • [46] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chemical Physics Letters. 49 (1977) 225–232.
  • [46] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chemical Physics Letters. 49 (1977) 225–232.
  • [47] Z. Jiang, B. Wang, T. Fang, Adsorption and dehydrogenation mechanism of methane on clean and oxygen-covered Pd (1 0 0) surfaces: A DFT study, Applied Surface Science. 320 (2014) 256–262.
  • [47] Z. Jiang, B. Wang, T. Fang, Adsorption and dehydrogenation mechanism of methane on clean and oxygen-covered Pd (1 0 0) surfaces: A DFT study, Applied Surface Science. 320 (2014) 256–262.
  • [48] M.D. Esrafili, R. Nurazar, A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol, Applied Surface Science. 314 (2014) 90–96.
  • [48] M.D. Esrafili, R. Nurazar, A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol, Applied Surface Science. 314 (2014) 90–96.
  • [49] P. Du, P. Wu, C. Cai, Mechanism of Methanol Decomposition on the Pt 3 Ni(111) Surface: DFT Study, J. Phys. Chem. C. 121 (2017) 9348–9360.
  • [49] P. Du, P. Wu, C. Cai, Mechanism of Methanol Decomposition on the Pt 3 Ni(111) Surface: DFT Study, J. Phys. Chem. C. 121 (2017) 9348–9360.
  • [50] T. Choksi, J. Greeley, Partial Oxidation of Methanol on MoO 3 (010): A DFT and Microkinetic Study, ACS Catal. 6 (2016) 7260–7277.
  • [50] T. Choksi, J. Greeley, Partial Oxidation of Methanol on MoO 3 (010): A DFT and Microkinetic Study, ACS Catal. 6 (2016) 7260–7277.
  • [51] W. Zhang, G.-J. Xia, Y.-G. Wang, Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy, Chinese Journal of Catalysis. 43 (2022) 167–176.
  • [51] W. Zhang, G.-J. Xia, Y.-G. Wang, Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy, Chinese Journal of Catalysis. 43 (2022) 167–176.
  • [52] X. Wang, W.-K. Chen, C.-H. Lu, A periodic density functional theory study of the dehydrogenation of methanol over CuCl(111) surface, Applied Surface Science. 254 (2008) 4421–4431.
  • [52] X. Wang, W.-K. Chen, C.-H. Lu, A periodic density functional theory study of the dehydrogenation of methanol over CuCl(111) surface, Applied Surface Science. 254 (2008) 4421–4431.
  • [53] L. Zhao, S. Wang, Q. Ding, W. Xu, P. Sang, Y. Chi, X. Lu, W. Guo, The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation, J. Phys. Chem. C. 119 (2015) 20389–20400.
  • [53] L. Zhao, S. Wang, Q. Ding, W. Xu, P. Sang, Y. Chi, X. Lu, W. Guo, The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation, J. Phys. Chem. C. 119 (2015) 20389–20400.
  • [54] X. Wang, L. Chen, B. Li, A density functional theory study of methanol dehydrogenation on the PtPd 3 (111) surface, International Journal of Hydrogen Energy. 40 (2015) 9656–9669.
  • [54] X. Wang, L. Chen, B. Li, A density functional theory study of methanol dehydrogenation on the PtPd 3 (111) surface, International Journal of Hydrogen Energy. 40 (2015) 9656–9669.
  • [55] A. Hassak, R. Ghailane, Theoretical investigation of the hydrogen production by adsorption of methanol on bimetallic Pd-Ge (1 1 0) surface as future green combustible using DFT-D method: Energetic and structural aspect of interaction pathways of metal with methanol, Computational and Theoretical Chemistry. 1210 (2022) 113635.
  • [55] A. Hassak, R. Ghailane, Theoretical investigation of the hydrogen production by adsorption of methanol on bimetallic Pd-Ge (1 1 0) surface as future green combustible using DFT-D method: Energetic and structural aspect of interaction pathways of metal with methanol, Computational and Theoretical Chemistry. 1210 (2022) 113635.
  • [56] R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111), Phys. Chem. Chem. Phys. 12 (2010) 7794–7803.
  • [56] R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111), Phys. Chem. Chem. Phys. 12 (2010) 7794–7803.
  • [57] K.W. Park, J.H. Choi, Y.E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation, J. Phys. Chem. B 107 (2003) 5851–5856.
  • [57] K.W. Park, J.H. Choi, Y.E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation, J. Phys. Chem. B 107 (2003) 5851–5856.
  • [58] Y. Ishikawa, M.S. Liao, C.R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci. 463 (2000) 66–80.
  • [58] Y. Ishikawa, M.S. Liao, C.R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci. 463 (2000) 66–80.

A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity

Year 2024, , 62 - 79, 21.05.2024
https://doi.org/10.33435/tcandtc.1399682

Abstract

Platinum is the most active pure metal for dehydrogenating methanol to create hydrogen, which is crucial for fuel cells. However, one significant disadvantage that reduces the effectiveness and long-term performance of platinum catalysts is their susceptibility to CO poisoning. In the current study, we examine and elucidate the promotional impact of Ge on Pt catalysts with increased resistance to deactivation by CO poisoning. We do this by combining partial density of states calculations with electronic configuration and Mulliken atomic charges. The self-consistent periodic density functional theory with dispersion correction (DFT-D) was used to investigate the methanol adsorption and dehydrogenation mechanisms on the surface of PtGe (110). On the surface, several adsorption mechanisms of pertinent intermediates were found. Furthermore, a thorough analysis of a reaction network comprising four reaction paths revealed that, in terms of activation barriers, the first O—H bond scission of CH3OH appears to be more advantageous than C—H bond cleavage on the PtGe(110) surface. Additionally, it has been demonstrated that the main route on the PtGe(110) surface is CH3OH→CH3O→CH2O→CHO→CO evolution. The remarkable differences in the predominant reaction pathway on the Pt(110) surface, and PtGe(110) surface indicate that the Ge-doped Pt Nano catalyst is more selective and resistant to deactivation.

References

  • [1] M. AlKhars, F. Miah, H. Qudrat-Ullah, A. Kayal, A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries, Sustainability. 12 (2020) 3845.
  • [1] M. AlKhars, F. Miah, H. Qudrat-Ullah, A. Kayal, A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries, Sustainability. 12 (2020) 3845.
  • [2] A. Karki, S. Phuyal, D. Tuladhar, S. Basnet, B. Shrestha, Status of Pure Electric Vehicle Power Train Technology and Future Prospects, ASI. 3 (2020) 35.
  • [2] A. Karki, S. Phuyal, D. Tuladhar, S. Basnet, B. Shrestha, Status of Pure Electric Vehicle Power Train Technology and Future Prospects, ASI. 3 (2020) 35.
  • [3] X. Pan, H. Wang, L. Wang, W. Chen, Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals, Energy. 155 (2018) 853–864.
  • [3] X. Pan, H. Wang, L. Wang, W. Chen, Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals, Energy. 155 (2018) 853–864.
  • [4] G. Xu, R. Si, J. Liu, L. Zhang, X. Gong, R. Gao, B. Liu, J. Zhang, Directed self-assembly pathways of three-dimensional Pt/Pd nanocrystal superlattice electrocatalysts for enhanced methanol oxidation reaction, J. Mater. Chem. A. 6 (2018) 12759–12767.
  • [4] G. Xu, R. Si, J. Liu, L. Zhang, X. Gong, R. Gao, B. Liu, J. Zhang, Directed self-assembly pathways of three-dimensional Pt/Pd nanocrystal superlattice electrocatalysts for enhanced methanol oxidation reaction, J. Mater. Chem. A. 6 (2018) 12759–12767.
  • [5] S.S. Munjewar, S.B. Thombre, Effect of current collector roughness on performance of passive direct methanol fuel cell, Renew. Energy 138 (2019) 272–283.
  • [5] S.S. Munjewar, S.B. Thombre, Effect of current collector roughness on performance of passive direct methanol fuel cell, Renew. Energy 138 (2019) 272–283.
  • [6] H. Li, Q. Fu, L. Xu, S. Ma, Y. Zheng, X. Liu, S. Yu, Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis, Energy Environ. Sci. 10 (2017) 1751–1756.
  • [6] H. Li, Q. Fu, L. Xu, S. Ma, Y. Zheng, X. Liu, S. Yu, Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis, Energy Environ. Sci. 10 (2017) 1751–1756.
  • [7] S. Şen, F. Şen, G. Gökağaç, Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation, Phys. Chem. Chem. Phys. 13 (2011) 6784.
  • [7] S. Şen, F. Şen, G. Gökağaç, Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation, Phys. Chem. Chem. Phys. 13 (2011) 6784.
  • [8] F. Şen, G. Gökaǧaç, Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol, Energy Fuels. 22 (2008) 1858–1864.
  • [8] F. Şen, G. Gökaǧaç, Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol, Energy Fuels. 22 (2008) 1858–1864.
  • [9] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, International Journal of Hydrogen Energy. 42 (2017) 13061–13069.
  • [9] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, International Journal of Hydrogen Energy. 42 (2017) 13061–13069.
  • [10] S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, Methanol Oxidation at Pt−Cu, Pt−Ni, and Pt−Co Electrode Coatings Prepared by a Galvanic Replacement Process, J. Phys. Chem. C. 114 (2010) 5217–5223.
  • [10] S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis, S. Sotiropoulos, Methanol Oxidation at Pt−Cu, Pt−Ni, and Pt−Co Electrode Coatings Prepared by a Galvanic Replacement Process, J. Phys. Chem. C. 114 (2010) 5217–5223.
  • [11] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531.
  • [11] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531.
  • [12] L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt−Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties, Nano Lett. 9 (2009) 4352–4358.
  • [12] L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt−Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties, Nano Lett. 9 (2009) 4352–4358.
  • [13] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, F. Şen, Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation, International Journal of Hydrogen Energy. 41 (2016) 3093–3101.
  • [13] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, F. Şen, Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation, International Journal of Hydrogen Energy. 41 (2016) 3093–3101.
  • [14] F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Electrocatalysis for the direct alcohol fuel cell, Top Catal. 40 (2006) 111–121.
  • [14] F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Electrocatalysis for the direct alcohol fuel cell, Top Catal. 40 (2006) 111–121.
  • [15] Z. Yang, Y. Shi, X. Wang, G. Zhang, P. Cui, Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell, Journal of Power Sources. 431 (2019) 125–134.
  • [15] Z. Yang, Y. Shi, X. Wang, G. Zhang, P. Cui, Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell, Journal of Power Sources. 431 (2019) 125–134.
  • [16] J.C. Park, C.H. Choi, Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance, Journal of Power Sources. 358 (2017) 76–84.
  • [16] J.C. Park, C.H. Choi, Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance, Journal of Power Sources. 358 (2017) 76–84.
  • [17] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells, Journal of Power Sources. 160 (2006) 957–968.
  • [17] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells, Journal of Power Sources. 160 (2006) 957–968.
  • [18] T. Hyeon, S. Han, Y.-E. Sung, K.-W. Park, Y.-W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. 115 (2003) 4488–4492.
  • [18] T. Hyeon, S. Han, Y.-E. Sung, K.-W. Park, Y.-W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. 115 (2003) 4488–4492.
  • [19] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, J. Phys. Chem. B. 109 (2005) 22212–22216.
  • [19] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, J. Phys. Chem. B. 109 (2005) 22212–22216.
  • [20] F. Şen, G. Gökağaç, S. Şen, High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, J Nanopart Res. 15 (2013) 1979.
  • [20] F. Şen, G. Gökağaç, S. Şen, High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions, J Nanopart Res. 15 (2013) 1979.
  • [21] J. Qi, S. Yan, Q. Jiang, Y. Liu, G. Sun, Improving the activity and stability of a Pt/C electrocatalyst for direct methanol fuel cells, Carbon. 48 (2010) 163–169.
  • [21] J. Qi, S. Yan, Q. Jiang, Y. Liu, G. Sun, Improving the activity and stability of a Pt/C electrocatalyst for direct methanol fuel cells, Carbon. 48 (2010) 163–169.
  • [22] E. Erken, İ. Esirden, M. Kaya, F. Sen, A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation, RSC Adv. 5 (2015) 68558–68564.
  • [22] E. Erken, İ. Esirden, M. Kaya, F. Sen, A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation, RSC Adv. 5 (2015) 68558–68564.
  • [23] C. Li, H. Tan, J. Lin, X. Luo, S. Wang, J. You, Y.-M. Kang, Y. Bando, Y. Yamauchi, J. Kim, Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction, Nano Today. 21 (2018) 91–105.
  • [23] C. Li, H. Tan, J. Lin, X. Luo, S. Wang, J. You, Y.-M. Kang, Y. Bando, Y. Yamauchi, J. Kim, Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction, Nano Today. 21 (2018) 91–105.
  • [24] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [24] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [25] H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K.C.W. Wu, Y. Yamauchi, Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt-Ru Particles with Tunable Shell Thicknesses, Small. 9 (2013) 1047–1051.
  • [25] H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K.C.W. Wu, Y. Yamauchi, Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt-Ru Particles with Tunable Shell Thicknesses, Small. 9 (2013) 1047–1051.
  • [26] C. Li, M. Iqbal, B. Jiang, Z. Wang, J. Kim, A.K. Nanjundan, A.E. Whitten, K. Wood, Y. Yamauchi, Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles, Chem. Sci. 10 (2019) 4054–4061.
  • [26] C. Li, M. Iqbal, B. Jiang, Z. Wang, J. Kim, A.K. Nanjundan, A.E. Whitten, K. Wood, Y. Yamauchi, Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles, Chem. Sci. 10 (2019) 4054–4061.
  • [27] H. Ataee-Esfahani, L. Wang, Y. Yamauchi, Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell, Chem. Commun. 46 (2010) 3684.
  • [27] H. Ataee-Esfahani, L. Wang, Y. Yamauchi, Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell, Chem. Commun. 46 (2010) 3684.
  • [28] E. Kuyuldar, H. Burhan, A. Şavk, B. Güven, C. Özdemir, S. Şahin, A. Khan, F. Şen, Enhanced Electrocatalytic Activity and Durability of PtRu Nanoparticles Decorated on rGO Material for Ethanol Oxidation Reaction, in: A. Khan, M. Jawaid, B. Neppolian, A.M. Asiri (Eds.), Graphene Functionalization Strategies, Springer Singapore, Singapore, 2019: pp. 389–398.
  • [28] E. Kuyuldar, H. Burhan, A. Şavk, B. Güven, C. Özdemir, S. Şahin, A. Khan, F. Şen, Enhanced Electrocatalytic Activity and Durability of PtRu Nanoparticles Decorated on rGO Material for Ethanol Oxidation Reaction, in: A. Khan, M. Jawaid, B. Neppolian, A.M. Asiri (Eds.), Graphene Functionalization Strategies, Springer Singapore, Singapore, 2019: pp. 389–398.
  • [29] S. Stevanović, D. Tripković, A. G. Wohlmuther, J. Rogan, U. Lačnjevac, V. Jovanović, Carbon Supported PtSn versus PtSnO2 Catalysts in Methanol Oxidation, Int. J. Electrochem. Sci. 16 (2021) 1-16.
  • [29] S. Stevanović, D. Tripković, A. G. Wohlmuther, J. Rogan, U. Lačnjevac, V. Jovanović, Carbon Supported PtSn versus PtSnO2 Catalysts in Methanol Oxidation, Int. J. Electrochem. Sci. 16 (2021) 1-16.
  • [30] H. Tian, Y. Yu, Q. Wang, J. Li, P. Rao, R. Li, Y. Du, C. Jia, J. Luo, P. Deng, Y. Shen, X. Tian, Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction, International Journal of Hydrogen Energy. 46 (2021) 31202–31215.
  • [30] H. Tian, Y. Yu, Q. Wang, J. Li, P. Rao, R. Li, Y. Du, C. Jia, J. Luo, P. Deng, Y. Shen, X. Tian, Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction, International Journal of Hydrogen Energy. 46 (2021) 31202–31215.
  • [31] L. Chen, L. Zhou, H. Lu, Y. Zhou, J. Huang, J. Wang, Y. Wang, X. Yuan, Y. Yao, Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction, Chem. Commun. 56 (2020) 9138–9141.
  • [31] L. Chen, L. Zhou, H. Lu, Y. Zhou, J. Huang, J. Wang, Y. Wang, X. Yuan, Y. Yao, Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction, Chem. Commun. 56 (2020) 9138–9141.
  • [32] Q. Lv, X. Ren, L. Liu, W. Guan, A. Liu, Theoretical investigation of methanol oxidation on Pt and PtNi catalysts, Ionics. 26 (2020) 1325–1336.
  • [32] Q. Lv, X. Ren, L. Liu, W. Guan, A. Liu, Theoretical investigation of methanol oxidation on Pt and PtNi catalysts, Ionics. 26 (2020) 1325–1336.
  • [33] G. You, J. Jiang, M. Li, L. Li, D. Tang, J. Zhang, X.C. Zeng, R. He, PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?, ACS Catal. 8 (2018) 132–143.
  • [33] G. You, J. Jiang, M. Li, L. Li, D. Tang, J. Zhang, X.C. Zeng, R. He, PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?, ACS Catal. 8 (2018) 132–143.
  • [34] P. Wang, H. Cui, C. Wang, Ultrathin PtMo-CeO hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation, Chemical Engineering Journal. 429 (2022) 132435.
  • [34] P. Wang, H. Cui, C. Wang, Ultrathin PtMo-CeO hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation, Chemical Engineering Journal. 429 (2022) 132435.
  • [35] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [35] C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures, Acc. Chem. Res. 51 (2018) 1764–1773.
  • [36] E. Jimenez-Izal, J.-Y. Liu, A.N. Alexandrova, Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation, Journal of Catalysis. 374 (2019) 93–100.
  • [36] E. Jimenez-Izal, J.-Y. Liu, A.N. Alexandrova, Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation, Journal of Catalysis. 374 (2019) 93–100.
  • [37] A. Ugartemendia, K. Peeters, P. Ferrari, A. Cózar, J.M. Mercero, E. Janssens, E. Jimenez‐Izal, Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning, ChemPhysChem. 22 (2021) 1603–1610.
  • [37] A. Ugartemendia, K. Peeters, P. Ferrari, A. Cózar, J.M. Mercero, E. Janssens, E. Jimenez‐Izal, Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning, ChemPhysChem. 22 (2021) 1603–1610.
  • [38] N.S. Veizaga, V.I. Rodriguez, M. Bruno, S.R. de Miguel, The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells, Electrocatalysis. 10 (2019) 125–133.
  • [38] N.S. Veizaga, V.I. Rodriguez, M. Bruno, S.R. de Miguel, The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells, Electrocatalysis. 10 (2019) 125–133.
  • [39] N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC, International Journal of Hydrogen Energy. 39 (2014) 8728–8737.
  • [39] N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC, International Journal of Hydrogen Energy. 39 (2014) 8728–8737.
  • [40] B. Delley, From molecules to solids with the DMol3 approach, The Journal of Chemical Physics. 113 (2000) 7756–7764.
  • [40] B. Delley, From molecules to solids with the DMol3 approach, The Journal of Chemical Physics. 113 (2000) 7756–7764.
  • [41] B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics. 92 (1990) 508–517.
  • [41] B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics. 92 (1990) 508–517.
  • [42] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
  • [42] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
  • [43] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.
  • [43] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.
  • [44] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
  • [44] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
  • [45] S. Grimme, Density functional theory with London dispersion corrections, WIREs Comput Mol Sci. 1 (2011) 211–228.
  • [45] S. Grimme, Density functional theory with London dispersion corrections, WIREs Comput Mol Sci. 1 (2011) 211–228.
  • [46] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chemical Physics Letters. 49 (1977) 225–232.
  • [46] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chemical Physics Letters. 49 (1977) 225–232.
  • [47] Z. Jiang, B. Wang, T. Fang, Adsorption and dehydrogenation mechanism of methane on clean and oxygen-covered Pd (1 0 0) surfaces: A DFT study, Applied Surface Science. 320 (2014) 256–262.
  • [47] Z. Jiang, B. Wang, T. Fang, Adsorption and dehydrogenation mechanism of methane on clean and oxygen-covered Pd (1 0 0) surfaces: A DFT study, Applied Surface Science. 320 (2014) 256–262.
  • [48] M.D. Esrafili, R. Nurazar, A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol, Applied Surface Science. 314 (2014) 90–96.
  • [48] M.D. Esrafili, R. Nurazar, A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol, Applied Surface Science. 314 (2014) 90–96.
  • [49] P. Du, P. Wu, C. Cai, Mechanism of Methanol Decomposition on the Pt 3 Ni(111) Surface: DFT Study, J. Phys. Chem. C. 121 (2017) 9348–9360.
  • [49] P. Du, P. Wu, C. Cai, Mechanism of Methanol Decomposition on the Pt 3 Ni(111) Surface: DFT Study, J. Phys. Chem. C. 121 (2017) 9348–9360.
  • [50] T. Choksi, J. Greeley, Partial Oxidation of Methanol on MoO 3 (010): A DFT and Microkinetic Study, ACS Catal. 6 (2016) 7260–7277.
  • [50] T. Choksi, J. Greeley, Partial Oxidation of Methanol on MoO 3 (010): A DFT and Microkinetic Study, ACS Catal. 6 (2016) 7260–7277.
  • [51] W. Zhang, G.-J. Xia, Y.-G. Wang, Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy, Chinese Journal of Catalysis. 43 (2022) 167–176.
  • [51] W. Zhang, G.-J. Xia, Y.-G. Wang, Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy, Chinese Journal of Catalysis. 43 (2022) 167–176.
  • [52] X. Wang, W.-K. Chen, C.-H. Lu, A periodic density functional theory study of the dehydrogenation of methanol over CuCl(111) surface, Applied Surface Science. 254 (2008) 4421–4431.
  • [52] X. Wang, W.-K. Chen, C.-H. Lu, A periodic density functional theory study of the dehydrogenation of methanol over CuCl(111) surface, Applied Surface Science. 254 (2008) 4421–4431.
  • [53] L. Zhao, S. Wang, Q. Ding, W. Xu, P. Sang, Y. Chi, X. Lu, W. Guo, The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation, J. Phys. Chem. C. 119 (2015) 20389–20400.
  • [53] L. Zhao, S. Wang, Q. Ding, W. Xu, P. Sang, Y. Chi, X. Lu, W. Guo, The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation, J. Phys. Chem. C. 119 (2015) 20389–20400.
  • [54] X. Wang, L. Chen, B. Li, A density functional theory study of methanol dehydrogenation on the PtPd 3 (111) surface, International Journal of Hydrogen Energy. 40 (2015) 9656–9669.
  • [54] X. Wang, L. Chen, B. Li, A density functional theory study of methanol dehydrogenation on the PtPd 3 (111) surface, International Journal of Hydrogen Energy. 40 (2015) 9656–9669.
  • [55] A. Hassak, R. Ghailane, Theoretical investigation of the hydrogen production by adsorption of methanol on bimetallic Pd-Ge (1 1 0) surface as future green combustible using DFT-D method: Energetic and structural aspect of interaction pathways of metal with methanol, Computational and Theoretical Chemistry. 1210 (2022) 113635.
  • [55] A. Hassak, R. Ghailane, Theoretical investigation of the hydrogen production by adsorption of methanol on bimetallic Pd-Ge (1 1 0) surface as future green combustible using DFT-D method: Energetic and structural aspect of interaction pathways of metal with methanol, Computational and Theoretical Chemistry. 1210 (2022) 113635.
  • [56] R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111), Phys. Chem. Chem. Phys. 12 (2010) 7794–7803.
  • [56] R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111), Phys. Chem. Chem. Phys. 12 (2010) 7794–7803.
  • [57] K.W. Park, J.H. Choi, Y.E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation, J. Phys. Chem. B 107 (2003) 5851–5856.
  • [57] K.W. Park, J.H. Choi, Y.E. Sung, Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation, J. Phys. Chem. B 107 (2003) 5851–5856.
  • [58] Y. Ishikawa, M.S. Liao, C.R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci. 463 (2000) 66–80.
  • [58] Y. Ishikawa, M.S. Liao, C.R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci. 463 (2000) 66–80.
There are 116 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Abdellatif Hassak 0009-0004-3326-8238

Rachida Ghailane 0000-0002-6796-1442

Early Pub Date May 21, 2024
Publication Date May 21, 2024
Submission Date December 3, 2023
Acceptance Date March 24, 2024
Published in Issue Year 2024

Cite

APA Hassak, A., & Ghailane, R. (2024). A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity. Turkish Computational and Theoretical Chemistry, 8(2), 62-79. https://doi.org/10.33435/tcandtc.1399682
AMA Hassak A, Ghailane R. A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity. Turkish Comp Theo Chem (TC&TC). May 2024;8(2):62-79. doi:10.33435/tcandtc.1399682
Chicago Hassak, Abdellatif, and Rachida Ghailane. “A DFT-D Investigation of the Energetic and Structural Aspects of Dehydrogenation of Methanol on a Bimetallic Surface PtGe(110) Exploring the Germanium Effect on the Anti-Poisoning of pt(110) Catalytic Activity”. Turkish Computational and Theoretical Chemistry 8, no. 2 (May 2024): 62-79. https://doi.org/10.33435/tcandtc.1399682.
EndNote Hassak A, Ghailane R (May 1, 2024) A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity. Turkish Computational and Theoretical Chemistry 8 2 62–79.
IEEE A. Hassak and R. Ghailane, “A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 2, pp. 62–79, 2024, doi: 10.33435/tcandtc.1399682.
ISNAD Hassak, Abdellatif - Ghailane, Rachida. “A DFT-D Investigation of the Energetic and Structural Aspects of Dehydrogenation of Methanol on a Bimetallic Surface PtGe(110) Exploring the Germanium Effect on the Anti-Poisoning of pt(110) Catalytic Activity”. Turkish Computational and Theoretical Chemistry 8/2 (May 2024), 62-79. https://doi.org/10.33435/tcandtc.1399682.
JAMA Hassak A, Ghailane R. A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity. Turkish Comp Theo Chem (TC&TC). 2024;8:62–79.
MLA Hassak, Abdellatif and Rachida Ghailane. “A DFT-D Investigation of the Energetic and Structural Aspects of Dehydrogenation of Methanol on a Bimetallic Surface PtGe(110) Exploring the Germanium Effect on the Anti-Poisoning of pt(110) Catalytic Activity”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 2, 2024, pp. 62-79, doi:10.33435/tcandtc.1399682.
Vancouver Hassak A, Ghailane R. A DFT-D investigation of the energetic and structural aspects of dehydrogenation of methanol on a bimetallic surface PtGe(110) exploring the germanium effect on the anti-poisoning of pt(110) catalytic activity. Turkish Comp Theo Chem (TC&TC). 2024;8(2):62-79.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)