Research Article
BibTex RIS Cite
Year 2024, , 70 - 82, 02.12.2024
https://doi.org/10.33435/tcandtc.1406726

Abstract

References

  • [1] Abduljawad, E. Review of some evidenced medicinal activities of Acacia Nilotica. Archives of Pharmacy Practice, 11, (4), (2020), 20–25.
  • [2] Asres, K.; Seyoum, A.; Veeresham, C.; Bucar, F.; and Gibbons, S. Naturally derived anti-HIV agents. Phytotherapy Research, 19, (7), (2005), 557–581.
  • [3] Daina, A.; Michielin, O.; and Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017 7:1, 7, (1), (2017), 1–13.
  • [4] Ferreira De Freitas, R.; and Schapira, M. A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8, (10), (2017), 1970–1981.
  • [5] El Gendy, A.E.N.G.; Essa, A.F.; El-Rashedy, A.A.; Elgamal, A.M.; Khalaf, D.D.; Hassan, E.M.; Abd-ElGawad, A.M.; Elgorban, A.M.; Zaghloul, N.S.; Alamery, S.F.; and Elshamy, A.I. Antiviral Potentialities of Chemical Characterized Essential Oils of Acacia nilotica Bark and Fruits against Hepatitis A and Herpes Simplex Viruses: In Vitro, In Silico, and Molecular Dynamics Studies. Plants, 11, (21), (2022), 2889.
  • [6] Hamza, O.J.M.; van den Bout-van den Beukel, C.J.P.; Matee, M.I.N.; Moshi, M.J.; Mikx, F.H.M.; Selemani, H.O.; Mbwambo, Z.H.; Van der Ven, A.J.A.M.; and Verweij, P.E. Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. Journal of Ethnopharmacology, 108, (1), (2006), 124–132.
  • [7] Higueruelo, A.P.; Schreyer, A.; Bickerton, G.R.J.; Blundell, T.L.; and Pitt, W.R. What Can We Learn from the Evolution of Protein-Ligand Interactions to Aid the Design of New Therapeutics? PLOS ONE, 7, (12), (2012), e51742.
  • [8] Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020 582:7811, 582, (7811), (2020), 289–293.
  • [9] Kibet Sambu, E. ANNUAL GENERAL MEETINGS IN THE ERA OF COVID-19 PANDEMIC: LAW AND PRACTICE IN TANZANIA.
  • [10] Osman, M.F.A.; Abdalla, S.S.; Abdelghani, S.; Mangi, A.A.; and Eltayeb, L.B. Anti-bacterial potential of (Acacia nilotica, Trigonella foenum-graecum, Punica granatum and Commiphora myrrha) crude extracts against diverse drug sensitive and resistant bacterial species. Plant Science Today, 9, (4), (2022), 970–976.
  • [11] Raheel, R.; Ashraf, M.; Ejaz, S.; Javeed, A.; and Altaf, I. Assessment of the cytotoxic and anti-viral potential of aqueous extracts from different parts of Acacia nilotica (Linn) Delile against Peste des petits ruminants virus. Environmental Toxicology and Pharmacology, 35, (1), (2013), 72–81.
  • [12] Rather, L.J.; Shahid-Ul-Islam; and Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chemistry and Pharmacy, 2, (2015), 12–30.
  • [13] Sadiq, M.B.; Hanpithakpong, W.; Tarning, J.; and Anal, A.K. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Industrial Crops and Products, 77, (2015), 873–882.
  • [14] Salem, M.M.; Davidorf, F.H.; and Abdel-Rahman, M.H. In vitro anti-uveal melanoma activity of phenolic compounds from the Egyptian medicinal plant Acacia nilotica. Fitoterapia, 82, (8), (2011), 1279–1284.
  • [15] Samuel, J.G.; Malgija, B.; Ebenezer, C.; and Solomon, R.V. Insight into designing of 2-pyridone derivatives for COVID-19 drug discovery - A computational study. Structural Chemistry, 34, (4), (2023), 1289–1308.
  • [16] Shannalee R. Martinez, Maresha S. Gay, and L.Z. BDDCS, the Rule of 5 and Drugability. In Physiology & behavior2016, pp. 139–148.
  • [17] Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; and Arora, S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicology in Vitro, 22, (8), (2008), 1965–1970.
  • [18] Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; and Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. Journal of Ethnopharmacology, 141, (3), (2012), 803–809.
  • [19] Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; and Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10, (5), (2020), 766–788.
  • [20] Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research 2020 30:4, 30, (4), (2020), 343–355.

Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study

Year 2024, , 70 - 82, 02.12.2024
https://doi.org/10.33435/tcandtc.1406726

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has created an urgent need for effective therapeutics and vaccines. This study aimed to investigate the inhibitory activity of Acacia nilotica, a medicinal plant commonly used to treat various diseases in tropical and subtropical regions, against SARS-CoV-2 main proteases (Mpro) and spike proteins.
Based on published literature, 22 compounds derived from Acacia nilotica were selected and assessed for their drug likeliness using Lipinski's rule of five and the SwissADME web tool. The compounds that fulfilled Lipinski's rule were subjected to molecular docking with Mpro (PDB ID: 6LU7) and spike proteins (PDB ID: 6LXT) using the Molecular Operating Environment software MOE.
Among the 13 compounds docked with the main proteases and spike proteins of SARS-CoV-2, catechin-5-O-gallate, catechin-7-gallate, cetechin-3-O-gallate, cetechin-4-O-gallate, and gallocatechin-7-gallate was demonstrated superior inhibitory activity against Mpro and spike proteins compared to hydroxychloroquine, dexamethasone, and favipiravir.
These findings indicate Acacia nilotica's potential as a source for developing specific therapeutic agents against SARS-CoV-2, pending further validation through wet lab experiments.

References

  • [1] Abduljawad, E. Review of some evidenced medicinal activities of Acacia Nilotica. Archives of Pharmacy Practice, 11, (4), (2020), 20–25.
  • [2] Asres, K.; Seyoum, A.; Veeresham, C.; Bucar, F.; and Gibbons, S. Naturally derived anti-HIV agents. Phytotherapy Research, 19, (7), (2005), 557–581.
  • [3] Daina, A.; Michielin, O.; and Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017 7:1, 7, (1), (2017), 1–13.
  • [4] Ferreira De Freitas, R.; and Schapira, M. A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8, (10), (2017), 1970–1981.
  • [5] El Gendy, A.E.N.G.; Essa, A.F.; El-Rashedy, A.A.; Elgamal, A.M.; Khalaf, D.D.; Hassan, E.M.; Abd-ElGawad, A.M.; Elgorban, A.M.; Zaghloul, N.S.; Alamery, S.F.; and Elshamy, A.I. Antiviral Potentialities of Chemical Characterized Essential Oils of Acacia nilotica Bark and Fruits against Hepatitis A and Herpes Simplex Viruses: In Vitro, In Silico, and Molecular Dynamics Studies. Plants, 11, (21), (2022), 2889.
  • [6] Hamza, O.J.M.; van den Bout-van den Beukel, C.J.P.; Matee, M.I.N.; Moshi, M.J.; Mikx, F.H.M.; Selemani, H.O.; Mbwambo, Z.H.; Van der Ven, A.J.A.M.; and Verweij, P.E. Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. Journal of Ethnopharmacology, 108, (1), (2006), 124–132.
  • [7] Higueruelo, A.P.; Schreyer, A.; Bickerton, G.R.J.; Blundell, T.L.; and Pitt, W.R. What Can We Learn from the Evolution of Protein-Ligand Interactions to Aid the Design of New Therapeutics? PLOS ONE, 7, (12), (2012), e51742.
  • [8] Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020 582:7811, 582, (7811), (2020), 289–293.
  • [9] Kibet Sambu, E. ANNUAL GENERAL MEETINGS IN THE ERA OF COVID-19 PANDEMIC: LAW AND PRACTICE IN TANZANIA.
  • [10] Osman, M.F.A.; Abdalla, S.S.; Abdelghani, S.; Mangi, A.A.; and Eltayeb, L.B. Anti-bacterial potential of (Acacia nilotica, Trigonella foenum-graecum, Punica granatum and Commiphora myrrha) crude extracts against diverse drug sensitive and resistant bacterial species. Plant Science Today, 9, (4), (2022), 970–976.
  • [11] Raheel, R.; Ashraf, M.; Ejaz, S.; Javeed, A.; and Altaf, I. Assessment of the cytotoxic and anti-viral potential of aqueous extracts from different parts of Acacia nilotica (Linn) Delile against Peste des petits ruminants virus. Environmental Toxicology and Pharmacology, 35, (1), (2013), 72–81.
  • [12] Rather, L.J.; Shahid-Ul-Islam; and Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chemistry and Pharmacy, 2, (2015), 12–30.
  • [13] Sadiq, M.B.; Hanpithakpong, W.; Tarning, J.; and Anal, A.K. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Industrial Crops and Products, 77, (2015), 873–882.
  • [14] Salem, M.M.; Davidorf, F.H.; and Abdel-Rahman, M.H. In vitro anti-uveal melanoma activity of phenolic compounds from the Egyptian medicinal plant Acacia nilotica. Fitoterapia, 82, (8), (2011), 1279–1284.
  • [15] Samuel, J.G.; Malgija, B.; Ebenezer, C.; and Solomon, R.V. Insight into designing of 2-pyridone derivatives for COVID-19 drug discovery - A computational study. Structural Chemistry, 34, (4), (2023), 1289–1308.
  • [16] Shannalee R. Martinez, Maresha S. Gay, and L.Z. BDDCS, the Rule of 5 and Drugability. In Physiology & behavior2016, pp. 139–148.
  • [17] Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; and Arora, S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicology in Vitro, 22, (8), (2008), 1965–1970.
  • [18] Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; and Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. Journal of Ethnopharmacology, 141, (3), (2012), 803–809.
  • [19] Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; and Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10, (5), (2020), 766–788.
  • [20] Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research 2020 30:4, 30, (4), (2020), 343–355.
There are 20 citations in total.

Details

Primary Language English
Subjects Molecular Imaging
Journal Section Research Article
Authors

Abdalwahab Ahmed 0000-0002-0516-0615

Early Pub Date June 7, 2024
Publication Date December 2, 2024
Submission Date December 19, 2023
Acceptance Date April 18, 2024
Published in Issue Year 2024

Cite

APA Ahmed, A. (2024). Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study. Turkish Computational and Theoretical Chemistry, 8(4), 70-82. https://doi.org/10.33435/tcandtc.1406726
AMA Ahmed A. Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study. Turkish Comp Theo Chem (TC&TC). December 2024;8(4):70-82. doi:10.33435/tcandtc.1406726
Chicago Ahmed, Abdalwahab. “Acacia Nilotica (L.) Delile As New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study”. Turkish Computational and Theoretical Chemistry 8, no. 4 (December 2024): 70-82. https://doi.org/10.33435/tcandtc.1406726.
EndNote Ahmed A (December 1, 2024) Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study. Turkish Computational and Theoretical Chemistry 8 4 70–82.
IEEE A. Ahmed, “Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 4, pp. 70–82, 2024, doi: 10.33435/tcandtc.1406726.
ISNAD Ahmed, Abdalwahab. “Acacia Nilotica (L.) Delile As New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study”. Turkish Computational and Theoretical Chemistry 8/4 (December 2024), 70-82. https://doi.org/10.33435/tcandtc.1406726.
JAMA Ahmed A. Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study. Turkish Comp Theo Chem (TC&TC). 2024;8:70–82.
MLA Ahmed, Abdalwahab. “Acacia Nilotica (L.) Delile As New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 4, 2024, pp. 70-82, doi:10.33435/tcandtc.1406726.
Vancouver Ahmed A. Acacia nilotica (L.) Delile as New Potential Inhibitors of 2019 Novel Coronavirus (Covid-19): Molecular Docking Study. Turkish Comp Theo Chem (TC&TC). 2024;8(4):70-82.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)