Research Article
BibTex RIS Cite

Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods

Year 2024, , 103 - 114, 02.12.2024
https://doi.org/10.33435/tcandtc.1417334

Abstract

Structural and electronic properties of the GaN were simulated based on Density Functional Theory implementing Local Density Approximation methods. Hubbard U correction gives us an opportunity to find the correct energy gap for GaN in agreement with known experimental results. Choosing more accurate investigation methods leads to calculating accurate electronic band structure and in the future predicting some physical properties of related material. The bottom of the conduction band and the top of the valence band are formed mainly by p-orbitals of host Ga and N atoms. The present study shows the direct band gap character of GaN with a wurtzite structure

References

  • [1] Vurgaftman, J.R. Meyer, Band parameters for nitrogen containing semiconductors, J. Appl. Phys. 94 (2003) 3675-3696.
  • [2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies, J. Appl. Phys. 76 (1994) 1363-1398.
  • [3] Y. Arakawa, Progress in quantum dots for optoelectronics applications, Photonics Technol. 21st Century 4598 (2001) 106-112.
  • [4] A. Pérez-Tomás, G. Catalàn, A. Fontserè et al., Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor, Nanotechnology 26 (2015) 115203.
  • [5] Q. Chen, H. Hu, X. Chen, and J. Wang, Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations, Applied Physics Letters 98 (5) (2011) 053102.
  • [6] H. P. Maruska and J. J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN, Appl. Phys. Lett. 15 (1969) 327-329.
  • [7] R. C. Powell, N.-E. Lee, Y.-W. Kim, and J. E. Greene, Heteroepitaxial wurtzite and zincblende structure GaN grown by reactiveion molecularbeam epitaxy: Growth kinetics, microstructure, and properties, J. Appl. Phys. 73 (1993) 189-204.
  • [8] M. Magnuson, M. Mattesini, C. Höglund, J. Birch and L. Hultman, Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and firstprinciples methods, Physical Review B 81 (2010) 085125.
  • [9] R. Ahmed, H. Akbarzadeh, Fazel-e-Aleem, A first principle study of band structure of III-nitride compounds, Physica B 370 (2005) 52-60.
  • [10] X. Cai, Y. Ma, J. Ma, D. Xu and X. Luo, Structure and electronic bandgap tunability of m-plane GaN multilayers, Phys. Chem. Chem. Phys. 23 (2021) 5431-5437
  • [11] C. Stampfl, C.G. van de Walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B 59 (8) (1999) 5521-5535.
  • [12] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 136 (1964) 864-871.
  • [13] W. Kohn and L. Sham Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
  • [14] J. Perdew, K. Burk, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533-16539.
  • [15] B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Hubbard-Corrected DFT Energy Functionals: The LDA + U Description of Correlated Systems, Int. J. Quant. Chem. 114 (1) (2013) 14-49.
  • [16] W. R. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc, and A. Rockett, X-ray photoelectron spectroscopy and theory of the valence band and semicore Ga 3d states in GaN, Phys. Rev. B 50 (19) (1994) 14155-14160.
  • [17] J. Hedman and N. Martenson, Gallium Nitride Studied by Electron Spectroscopy, Phys. Scr. 22 (1980) 176-178.
  • [18] R. W. Hunt, L. Vanzetti, T. Castro, K. M. Chen, L. Sorba, P. I. Cohen, W. Gladfelter, J. Van Hove, A. Kahn, and A. Franciosi, Electronic structure, surface composition and long-range order in GaN, Physica B 185, 415-421, 1993.
  • [19] S. A. Ding, G. Neuhold, J. H. Weaver, P. Haeberle, K. Horn, O. Brandt, H. Yang, and K. Ploog, Electronic structure of cubic gallium nitride films grown on GaAs, J. Vac. Sci. Technol. A 14 (1996) 819-824.
  • [20] C. B. Stagarescu, L.-C. Duda, K. E. Smith, J. H. Guo, J. Nordgren, R. Singh, and T. D. Moustakas, Electronic structure of GaN measured using soft-x-ray emission and absorption, Phys. Rev. B 54 (24) (1996) R17335-R17338.
  • [21] Monkhorst H. J. and Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
  • [22] F. Martin, S. Matthias. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comput. Phys. Commun. 119 (1999) 67-79.
  • [23] R. W. G. Wyckoff, Crystal Structures 1, 85 (1963)
  • [24] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57 (1998) 1505-1509.
  • [25] A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B 52 (1995) R5467-R5470.
  • [26] V. Petkov, M. Gateshki, J. Choi, E. G. Gillan and Y. Ren, Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses, J. Mater. Chem. 15 (2005) 4654-4659.
  • [27] G. B. Pinhal, N. L. Marana, G. S. L. Fabris, J. R. Sambrano, Structural, electronic and mechanical properties of single walled AlN and GaN nanotubes via DFT/B3LYP, Theoretical Chemistry Accounts 138 (2019) 31.
  • [28] J. H. D. da Silva, D. M. G. Leite, A. Tabata, A. A. Cavalheiro, Structural and vibrational analysis of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering, J. Appl. Phys. 102 (2007) 063526.
  • [29] M.C. Mazini, J.R. Sambrano, A.A. Cavalheiro, J.H.D. da Silva, D.M.G. Leite, Efeitos da Adição de Átomos de Mn na Rede do GaN via Métodos de Estrutura Eletrônica, Quim. Nova. 33 (4) (2010) 834-840.
  • [30] S. Saib, N. Bouarissa, Structural phase transformations of GaN and InN under high pressure, Phys. B 387 (2007) 377-382.
  • [31] R. Pandey, J. E. Jaffe, and N. M. Harrison, Ab initio Study of High Pressure Phase Transition in GaN, J. Phys. Chem. Solids 55 (11) (1994) 1357-1361.
  • [32] B. Paulus, F.-H. Shi, and H. Stoll, A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III - V nitrides, J. Phys. Condens. Matter. 9 (1997) 2745-2758.
  • [33] V.N. Jafarova, G.S. Orudzhev, Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+ U methods, Solid State Communications 325 (2021) 114166.
  • [34] M.E. Arroyo-De Dompablo, A. Morales-García, and M. Taravillo, DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs, J. Chem. Phys. 135 (2011) 054503.
Year 2024, , 103 - 114, 02.12.2024
https://doi.org/10.33435/tcandtc.1417334

Abstract

References

  • [1] Vurgaftman, J.R. Meyer, Band parameters for nitrogen containing semiconductors, J. Appl. Phys. 94 (2003) 3675-3696.
  • [2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies, J. Appl. Phys. 76 (1994) 1363-1398.
  • [3] Y. Arakawa, Progress in quantum dots for optoelectronics applications, Photonics Technol. 21st Century 4598 (2001) 106-112.
  • [4] A. Pérez-Tomás, G. Catalàn, A. Fontserè et al., Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor, Nanotechnology 26 (2015) 115203.
  • [5] Q. Chen, H. Hu, X. Chen, and J. Wang, Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations, Applied Physics Letters 98 (5) (2011) 053102.
  • [6] H. P. Maruska and J. J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN, Appl. Phys. Lett. 15 (1969) 327-329.
  • [7] R. C. Powell, N.-E. Lee, Y.-W. Kim, and J. E. Greene, Heteroepitaxial wurtzite and zincblende structure GaN grown by reactiveion molecularbeam epitaxy: Growth kinetics, microstructure, and properties, J. Appl. Phys. 73 (1993) 189-204.
  • [8] M. Magnuson, M. Mattesini, C. Höglund, J. Birch and L. Hultman, Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and firstprinciples methods, Physical Review B 81 (2010) 085125.
  • [9] R. Ahmed, H. Akbarzadeh, Fazel-e-Aleem, A first principle study of band structure of III-nitride compounds, Physica B 370 (2005) 52-60.
  • [10] X. Cai, Y. Ma, J. Ma, D. Xu and X. Luo, Structure and electronic bandgap tunability of m-plane GaN multilayers, Phys. Chem. Chem. Phys. 23 (2021) 5431-5437
  • [11] C. Stampfl, C.G. van de Walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B 59 (8) (1999) 5521-5535.
  • [12] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 136 (1964) 864-871.
  • [13] W. Kohn and L. Sham Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
  • [14] J. Perdew, K. Burk, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533-16539.
  • [15] B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Hubbard-Corrected DFT Energy Functionals: The LDA + U Description of Correlated Systems, Int. J. Quant. Chem. 114 (1) (2013) 14-49.
  • [16] W. R. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc, and A. Rockett, X-ray photoelectron spectroscopy and theory of the valence band and semicore Ga 3d states in GaN, Phys. Rev. B 50 (19) (1994) 14155-14160.
  • [17] J. Hedman and N. Martenson, Gallium Nitride Studied by Electron Spectroscopy, Phys. Scr. 22 (1980) 176-178.
  • [18] R. W. Hunt, L. Vanzetti, T. Castro, K. M. Chen, L. Sorba, P. I. Cohen, W. Gladfelter, J. Van Hove, A. Kahn, and A. Franciosi, Electronic structure, surface composition and long-range order in GaN, Physica B 185, 415-421, 1993.
  • [19] S. A. Ding, G. Neuhold, J. H. Weaver, P. Haeberle, K. Horn, O. Brandt, H. Yang, and K. Ploog, Electronic structure of cubic gallium nitride films grown on GaAs, J. Vac. Sci. Technol. A 14 (1996) 819-824.
  • [20] C. B. Stagarescu, L.-C. Duda, K. E. Smith, J. H. Guo, J. Nordgren, R. Singh, and T. D. Moustakas, Electronic structure of GaN measured using soft-x-ray emission and absorption, Phys. Rev. B 54 (24) (1996) R17335-R17338.
  • [21] Monkhorst H. J. and Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
  • [22] F. Martin, S. Matthias. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comput. Phys. Commun. 119 (1999) 67-79.
  • [23] R. W. G. Wyckoff, Crystal Structures 1, 85 (1963)
  • [24] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57 (1998) 1505-1509.
  • [25] A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B 52 (1995) R5467-R5470.
  • [26] V. Petkov, M. Gateshki, J. Choi, E. G. Gillan and Y. Ren, Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses, J. Mater. Chem. 15 (2005) 4654-4659.
  • [27] G. B. Pinhal, N. L. Marana, G. S. L. Fabris, J. R. Sambrano, Structural, electronic and mechanical properties of single walled AlN and GaN nanotubes via DFT/B3LYP, Theoretical Chemistry Accounts 138 (2019) 31.
  • [28] J. H. D. da Silva, D. M. G. Leite, A. Tabata, A. A. Cavalheiro, Structural and vibrational analysis of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering, J. Appl. Phys. 102 (2007) 063526.
  • [29] M.C. Mazini, J.R. Sambrano, A.A. Cavalheiro, J.H.D. da Silva, D.M.G. Leite, Efeitos da Adição de Átomos de Mn na Rede do GaN via Métodos de Estrutura Eletrônica, Quim. Nova. 33 (4) (2010) 834-840.
  • [30] S. Saib, N. Bouarissa, Structural phase transformations of GaN and InN under high pressure, Phys. B 387 (2007) 377-382.
  • [31] R. Pandey, J. E. Jaffe, and N. M. Harrison, Ab initio Study of High Pressure Phase Transition in GaN, J. Phys. Chem. Solids 55 (11) (1994) 1357-1361.
  • [32] B. Paulus, F.-H. Shi, and H. Stoll, A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III - V nitrides, J. Phys. Condens. Matter. 9 (1997) 2745-2758.
  • [33] V.N. Jafarova, G.S. Orudzhev, Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+ U methods, Solid State Communications 325 (2021) 114166.
  • [34] M.E. Arroyo-De Dompablo, A. Morales-García, and M. Taravillo, DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs, J. Chem. Phys. 135 (2011) 054503.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics
Journal Section Research Article
Authors

Aynure Hadiyeva 0000-0001-7238-1066

Vusala Jafarova 0000-0002-0643-1464

Early Pub Date July 23, 2024
Publication Date December 2, 2024
Submission Date January 10, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024

Cite

APA Hadiyeva, A., & Jafarova, V. (2024). Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods. Turkish Computational and Theoretical Chemistry, 8(4), 103-114. https://doi.org/10.33435/tcandtc.1417334
AMA Hadiyeva A, Jafarova V. Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods. Turkish Comp Theo Chem (TC&TC). December 2024;8(4):103-114. doi:10.33435/tcandtc.1417334
Chicago Hadiyeva, Aynure, and Vusala Jafarova. “Structural and Electronic Properties of GaN: Ab Initio Study Within LDA and LDA+U methods”. Turkish Computational and Theoretical Chemistry 8, no. 4 (December 2024): 103-14. https://doi.org/10.33435/tcandtc.1417334.
EndNote Hadiyeva A, Jafarova V (December 1, 2024) Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods. Turkish Computational and Theoretical Chemistry 8 4 103–114.
IEEE A. Hadiyeva and V. Jafarova, “Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 4, pp. 103–114, 2024, doi: 10.33435/tcandtc.1417334.
ISNAD Hadiyeva, Aynure - Jafarova, Vusala. “Structural and Electronic Properties of GaN: Ab Initio Study Within LDA and LDA+U methods”. Turkish Computational and Theoretical Chemistry 8/4 (December 2024), 103-114. https://doi.org/10.33435/tcandtc.1417334.
JAMA Hadiyeva A, Jafarova V. Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods. Turkish Comp Theo Chem (TC&TC). 2024;8:103–114.
MLA Hadiyeva, Aynure and Vusala Jafarova. “Structural and Electronic Properties of GaN: Ab Initio Study Within LDA and LDA+U methods”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 4, 2024, pp. 103-14, doi:10.33435/tcandtc.1417334.
Vancouver Hadiyeva A, Jafarova V. Structural and electronic properties of GaN: Ab initio study within LDA and LDA+U methods. Turkish Comp Theo Chem (TC&TC). 2024;8(4):103-14.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)