Research Article
BibTex RIS Cite
Year 2025, , 63 - 74, 05.01.2025
https://doi.org/10.33435/tcandtc.1500969

Abstract

References

  • [1] S.R. Hubbard, Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog, EMBO J. 16 (1997) 5572–81.
  • [2] P. Blume-Jensen, T. Hunter, Oncogenic kinase signalling: Nature, 411 (2001) 355–65.
  • [3] M. Pathophysiology, C. Features, (Breakpoint Cluster Region) Gene on Chromosome 22 To the, N Engl J Med. 340 (1999) 1330–40.
  • [4] J. Zhang, P.L. Yang, N.S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat Rev Cancer, 9 (2009) 28–39.
  • [5] R. Roskoski, Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update, Pharmacol Res. 152 (2020) 104609.
  • [6] S. Gross, R. Rahal, N. Stransky, C. Lengauer, K.P. Hoeflich, Targeting cancer with kinase inhibitors, J Clin Invest. 125 (2015) 1780–9.
  • [7] B.J. Druker, M. Talpaz, D.J. Resta, B. Peng, E. Buchdunger, J.M. Ford, N.B. Lydon, H. Kantarjian, R. Capdeville, S. Ohno-Jones, S.C. Numb Er, Efficacy and Safety of a Specific Inhibitor of the Bcr-Abl Tyrosine, English J. 344 (2001) 1031–7.
  • [8] H.M. Kantarjian, F. Giles, N. Gattermann, K. Bhalla, G. Alimena, F. Palandri, et al., Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance, Blood. 110 (2007) 3540–6.
  • [9] R.A. Okimoto, B.W. Brannigan, P.L. Harris, S.M. Haserlat, J.G. Supko, Ph.D., et al., new england journal, 2129–39.
  • [10] N.H. Hanna, N. H. Hanna, MD, 207–10.
  • [11] L.V. Sequist, B. Besse, T.J. Lynch, V.A. Miller, K.K. Wong, B. Gitlitz, et al., Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer, J Clin Oncol. 28 (2010) 3076–83.
  • [12] A. Chan, S. Delaloge, F.A. Holmes, B. Moy, H. Iwata, V.J. Harvey, et al., Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial, Lancet Oncol. 17 (2016) 367–77.
  • [13] H. Imoto, N. Rauch, A.J. Neve, F. Khorsand, M. Kreileder, L.G. Alexopoulos, et al., A Combination of Conformation-Specific RAF Inhibitors Overcome Drug Resistance Brought about by RAF Overexpression, Biomolecules, 13 (2023).
  • [14] A. Torgovnick, B. Schumacher, DNA repair mechanisms in cancer development and therapy, Front Genet. 6 (2015) 1–15.
  • [15] J.A. Leopold, J. Loscalzo, Emerging role of precision medicine in cardiovascular disease, Circ Res. 122 (2018) 1302–15.
  • [16] S. Jahan, A.M. Al-saigul, M.H. Abdelgadir, Breast Cancer Breast Cancer, J R Soc Med. 70 (2016) 515–7.
  • [17] P. Wu, Z.J. Heins, J.T. Muller, L. Katsnelson, I. de Bruijn, A.A. Abeshouse, et al., Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the CBIOPortal, Mol Cell Proteomics. 18 (2019) 1893–8.
  • [18] K.S. Bhullar, N.O. Lagarón, E.M. McGowan, I. Parmar, A. Jha, B.P. Hubbard, et al., Kinase-targeted cancer therapies: Progress, challenges and future directions, Mol Cancer, 17 (2018).
  • [19] M.K. El-badrawy, A.M. Yousef, D. Shaalan, A.Z. Elsamanoudy, Matrix Metalloproteinase-9 Expression in Lung Cancer, 21 (2014) 327–34.
  • [20] N.P. Shah, J.M. Nicoll, B. Nagar, M.E. Gorre, R.L. Paquette, J. Kuriyan, et al., Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia, Cancer Cell. 2 (2002) 117–25.
  • [21] T. O’Hare, W.C. Shakespeare, X. Zhu, C.A. Eide, V.M. Rivera, F. Wang, et al., AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance, Cancer Cell. 16 (2009) 401–12.
  • [22] M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, H.Z. Chen, Y.B. Chen, et al., Bioorganic & Medicinal Chemistry Letters.
  • [23] A. Martorana, M.G. La, A. Lauria, Involved in Related Carcinogenic Pathways. 2020.
  • [24] G.C. dos Santos, A. de Andrade Bartolomeu, V.F. Ximenes, L.C. da Silva-Filho, Facile Synthesis and Photophysical Characterization of New Quinoline Dyes, J Fluoresc. 27 (2017) 271–80.
  • [25] A. Hochhaus, R.A. Larson, F. Guilhot, J.P. Radich, S. Branford, T.P. Hughes, et al., Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia, N Engl J Med. 376 (2017) 917–27.
  • [26] T. Zhang, B. Wan, Y. Zhao, C. Li, H. Liu, T. Lv, et al., Treatment of uncommon EGFR mutations in non-small cell lung cancer: New evidence and treatment, Transl Lung Cancer Res. 8 (2019) 302–16.
  • [27] U.V. Ucak, I. Ashyrmamatov, J. Ko, J. Lee, Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments, Nat Commun. 13 (2022) 1–10.
  • [28] D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual screening for drug discovery: Methods and applications, Nat Rev Drug Discov. 3 (2004) 935–49.
  • [29] S.S. Jabbar, M.H. Mohammed, Design, Synthesis, Insilco Study and Biological Evaluation of New Coumarin-Oxadiazole Derivatives as Potent Histone Deacetylase Inhibitors, Egypt J Chem. 66 (2023) 385–93.
  • [30] Y.S. Watanabe, Y. Fukunishi, H. Nakamura, 1P047 Modeling of Loops in Protein Structures, Seibutsu Butsuri. 44 (2004) S41.
  • [31] T.A. Halgren, Performance of MMFF94*, Scope, Parameterization, J Comput Chem. 17 (1996) 490–519.
  • [32] J. Liang, H. Edelsbrunner, C. Woodward, Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design, Protein Sci. 7 (1998) 1884–97.
  • [33] A. Van Zanten, Postface De la ségrégation aux inégalités: La réduction des opportunités, Form Empl. 120 (2012) 127–34.

An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors

Year 2025, , 63 - 74, 05.01.2025
https://doi.org/10.33435/tcandtc.1500969

Abstract

The field of oncology has been revolutionized by the discovery and development of targeted therapies for cancer. A study focuses on the development of tyrosine kinase inhibitors (TKIs) as effective targeted therapies. Although TKIs have shown promise in targeting cancer cell signaling pathways, the emergence of resistance poses a significant challenge, necessitating the development of novel and potent inhibitors.
Virtual docking simulations, which use molecular docking algorithms and scoring functions, predict how these TKIs bind to the enzyme and assess their binding strength. Preliminary results show that several of the designed TKIs have a strong binding affinity and form key interactions with the target tyrosine kinase. These interactions include hydrogen bonds, hydrophobic interactions, and electrostatic interactions, which are crucial for stabilizing the complex between the TKI and the enzyme. Additionally, the study identifies specific amino acid residues within the tyrosine kinase binding site that enhance the binding affinity of the TKIs. This detailed information is valuable for further optimizing TKI design and developing more effective inhibitors with improved binding properties.

References

  • [1] S.R. Hubbard, Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog, EMBO J. 16 (1997) 5572–81.
  • [2] P. Blume-Jensen, T. Hunter, Oncogenic kinase signalling: Nature, 411 (2001) 355–65.
  • [3] M. Pathophysiology, C. Features, (Breakpoint Cluster Region) Gene on Chromosome 22 To the, N Engl J Med. 340 (1999) 1330–40.
  • [4] J. Zhang, P.L. Yang, N.S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat Rev Cancer, 9 (2009) 28–39.
  • [5] R. Roskoski, Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update, Pharmacol Res. 152 (2020) 104609.
  • [6] S. Gross, R. Rahal, N. Stransky, C. Lengauer, K.P. Hoeflich, Targeting cancer with kinase inhibitors, J Clin Invest. 125 (2015) 1780–9.
  • [7] B.J. Druker, M. Talpaz, D.J. Resta, B. Peng, E. Buchdunger, J.M. Ford, N.B. Lydon, H. Kantarjian, R. Capdeville, S. Ohno-Jones, S.C. Numb Er, Efficacy and Safety of a Specific Inhibitor of the Bcr-Abl Tyrosine, English J. 344 (2001) 1031–7.
  • [8] H.M. Kantarjian, F. Giles, N. Gattermann, K. Bhalla, G. Alimena, F. Palandri, et al., Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance, Blood. 110 (2007) 3540–6.
  • [9] R.A. Okimoto, B.W. Brannigan, P.L. Harris, S.M. Haserlat, J.G. Supko, Ph.D., et al., new england journal, 2129–39.
  • [10] N.H. Hanna, N. H. Hanna, MD, 207–10.
  • [11] L.V. Sequist, B. Besse, T.J. Lynch, V.A. Miller, K.K. Wong, B. Gitlitz, et al., Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer, J Clin Oncol. 28 (2010) 3076–83.
  • [12] A. Chan, S. Delaloge, F.A. Holmes, B. Moy, H. Iwata, V.J. Harvey, et al., Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial, Lancet Oncol. 17 (2016) 367–77.
  • [13] H. Imoto, N. Rauch, A.J. Neve, F. Khorsand, M. Kreileder, L.G. Alexopoulos, et al., A Combination of Conformation-Specific RAF Inhibitors Overcome Drug Resistance Brought about by RAF Overexpression, Biomolecules, 13 (2023).
  • [14] A. Torgovnick, B. Schumacher, DNA repair mechanisms in cancer development and therapy, Front Genet. 6 (2015) 1–15.
  • [15] J.A. Leopold, J. Loscalzo, Emerging role of precision medicine in cardiovascular disease, Circ Res. 122 (2018) 1302–15.
  • [16] S. Jahan, A.M. Al-saigul, M.H. Abdelgadir, Breast Cancer Breast Cancer, J R Soc Med. 70 (2016) 515–7.
  • [17] P. Wu, Z.J. Heins, J.T. Muller, L. Katsnelson, I. de Bruijn, A.A. Abeshouse, et al., Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the CBIOPortal, Mol Cell Proteomics. 18 (2019) 1893–8.
  • [18] K.S. Bhullar, N.O. Lagarón, E.M. McGowan, I. Parmar, A. Jha, B.P. Hubbard, et al., Kinase-targeted cancer therapies: Progress, challenges and future directions, Mol Cancer, 17 (2018).
  • [19] M.K. El-badrawy, A.M. Yousef, D. Shaalan, A.Z. Elsamanoudy, Matrix Metalloproteinase-9 Expression in Lung Cancer, 21 (2014) 327–34.
  • [20] N.P. Shah, J.M. Nicoll, B. Nagar, M.E. Gorre, R.L. Paquette, J. Kuriyan, et al., Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia, Cancer Cell. 2 (2002) 117–25.
  • [21] T. O’Hare, W.C. Shakespeare, X. Zhu, C.A. Eide, V.M. Rivera, F. Wang, et al., AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance, Cancer Cell. 16 (2009) 401–12.
  • [22] M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, H.Z. Chen, Y.B. Chen, et al., Bioorganic & Medicinal Chemistry Letters.
  • [23] A. Martorana, M.G. La, A. Lauria, Involved in Related Carcinogenic Pathways. 2020.
  • [24] G.C. dos Santos, A. de Andrade Bartolomeu, V.F. Ximenes, L.C. da Silva-Filho, Facile Synthesis and Photophysical Characterization of New Quinoline Dyes, J Fluoresc. 27 (2017) 271–80.
  • [25] A. Hochhaus, R.A. Larson, F. Guilhot, J.P. Radich, S. Branford, T.P. Hughes, et al., Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia, N Engl J Med. 376 (2017) 917–27.
  • [26] T. Zhang, B. Wan, Y. Zhao, C. Li, H. Liu, T. Lv, et al., Treatment of uncommon EGFR mutations in non-small cell lung cancer: New evidence and treatment, Transl Lung Cancer Res. 8 (2019) 302–16.
  • [27] U.V. Ucak, I. Ashyrmamatov, J. Ko, J. Lee, Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments, Nat Commun. 13 (2022) 1–10.
  • [28] D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual screening for drug discovery: Methods and applications, Nat Rev Drug Discov. 3 (2004) 935–49.
  • [29] S.S. Jabbar, M.H. Mohammed, Design, Synthesis, Insilco Study and Biological Evaluation of New Coumarin-Oxadiazole Derivatives as Potent Histone Deacetylase Inhibitors, Egypt J Chem. 66 (2023) 385–93.
  • [30] Y.S. Watanabe, Y. Fukunishi, H. Nakamura, 1P047 Modeling of Loops in Protein Structures, Seibutsu Butsuri. 44 (2004) S41.
  • [31] T.A. Halgren, Performance of MMFF94*, Scope, Parameterization, J Comput Chem. 17 (1996) 490–519.
  • [32] J. Liang, H. Edelsbrunner, C. Woodward, Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design, Protein Sci. 7 (1998) 1884–97.
  • [33] A. Van Zanten, Postface De la ségrégation aux inégalités: La réduction des opportunités, Form Empl. 120 (2012) 127–34.
There are 33 citations in total.

Details

Primary Language English
Subjects Molecular Imaging
Journal Section Research Article
Authors

Sarah Jabbar 0000-0002-6497-9807

Mohammed Mohammed 0000-0002-3762-4189

Early Pub Date August 19, 2024
Publication Date January 5, 2025
Submission Date June 22, 2024
Acceptance Date July 16, 2024
Published in Issue Year 2025

Cite

APA Jabbar, S., & Mohammed, M. (2025). An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors. Turkish Computational and Theoretical Chemistry, 9(1), 63-74. https://doi.org/10.33435/tcandtc.1500969
AMA Jabbar S, Mohammed M. An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors. Turkish Comp Theo Chem (TC&TC). January 2025;9(1):63-74. doi:10.33435/tcandtc.1500969
Chicago Jabbar, Sarah, and Mohammed Mohammed. “An in Silico Study of New 1-Aminoquinoline-2(1H)-One Derivatives As Tyrosine Kinase Inhibitors”. Turkish Computational and Theoretical Chemistry 9, no. 1 (January 2025): 63-74. https://doi.org/10.33435/tcandtc.1500969.
EndNote Jabbar S, Mohammed M (January 1, 2025) An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors. Turkish Computational and Theoretical Chemistry 9 1 63–74.
IEEE S. Jabbar and M. Mohammed, “An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors”, Turkish Comp Theo Chem (TC&TC), vol. 9, no. 1, pp. 63–74, 2025, doi: 10.33435/tcandtc.1500969.
ISNAD Jabbar, Sarah - Mohammed, Mohammed. “An in Silico Study of New 1-Aminoquinoline-2(1H)-One Derivatives As Tyrosine Kinase Inhibitors”. Turkish Computational and Theoretical Chemistry 9/1 (January 2025), 63-74. https://doi.org/10.33435/tcandtc.1500969.
JAMA Jabbar S, Mohammed M. An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors. Turkish Comp Theo Chem (TC&TC). 2025;9:63–74.
MLA Jabbar, Sarah and Mohammed Mohammed. “An in Silico Study of New 1-Aminoquinoline-2(1H)-One Derivatives As Tyrosine Kinase Inhibitors”. Turkish Computational and Theoretical Chemistry, vol. 9, no. 1, 2025, pp. 63-74, doi:10.33435/tcandtc.1500969.
Vancouver Jabbar S, Mohammed M. An in silico study of new 1-aminoquinoline-2(1H)-one derivatives as tyrosine kinase inhibitors. Turkish Comp Theo Chem (TC&TC). 2025;9(1):63-74.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)