Research Article
BibTex RIS Cite

Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+

Year 2018, , 1 - 6, 15.12.2018
https://doi.org/10.33435/tcandtc.391349

Abstract

We have reported the electric dipole (E1), magnetic dipole (M1) and
electric quadrupole (E2) transition probabilities for some levels of 3p63d2
and 3p53d3 in Ca-like tungsten ion (W54+)
using the AUTOSTRUCTURE code, which uses non-relativistic or kappa-averaged
relativistic wave functions and the full Breit interaction in the Pauli
approximation.  In calculations, quantum
electrodynamical (QED) contributions and correlation effects have been also
taken into account. The results obtained have been compared with the available
experimental and theoretical results.

References

  • Reference[14] N.R. Badnell, Dielectronic recombination of Fe 22+ and Fe21+, J. Phys. B 19 (1986) 3827-3835.
  • Reference[15] N.R. Badnell, On the effects of the two-body non-fine-structure operators of the Breit - Pauli Hamiltonian, J. Phys. B 30 (1997) 1-11.
  • Reference[16] C.F. Fischer, T. Brage, P. Jönsson, Computational Atomic Structure- An MCHF Approach, Institute of Physics Publishing, Bristol and Philadelphia, 1997.
  • Reference[1] C. Biedermann, R. Radtke, R. Seidel, T. Pütterich, Spectroscopy of highly charged tungsten ions relevant to fusion plasmas, Phys. Scr. T 134 (2009) 014026-6.
  • Reference[2] U.I. Safronova, A.S. Safronova, Wavelengths and transition rates for nl–n'l' transitions in Be-, B-, Mg, Al-, Ca-, Zn-, Ag- and Yb-like tungsten ions, J. Phys. B 43 (2010) 074026-15.
  • Reference[3] P. Quinet, Dirac–Fock calculations of forbidden transitions within the 3pk and 3dk ground configurations of highly charged tungsten ions (W47+–W61+),J. Phys. B 44 (2011) 195007-9.
  • Reference[4] X.L. Guo, M. Huang, J. Yan, S. Li, R. Si, C.Y. Li, C.Y. Chen, Y.S Wang, Y.M. Zou, Relativistic many-body calculations on wavelengths and transition probabilities for forbidden transitions within the 3dk ground configurations in Co- through K-like ions of hafnium, tantalum, tungsten and gold, J. Phys. B 48 (2015) 144020-18.
  • Reference[5] Z.L. Zhao, K. Wang, S. Li, R. Si, C.Y. Chen, Z.B. Chen, J. Yan, Y. Ralchenko, Multi-configuration Dirac–Hartree–Fock calculations of forbidden transitions within the 3dk ground configurations of highly charged ions (Z = 72–83), Atomic Data and Nuclear Data Tables 119 (2018) 314–353.
  • Reference[6] X. Ding, R. Sun, J. Liu, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, E1, M1, E2 transition energies and probabilities of W54+ ions, J. Phys. B 50 (2017a) 045004-9.
  • Reference[7] X. Ding, R. Sun, F. Koike, D. Kato, I. Murakami, H.A. Sakaue, C. Dong. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion, Eur. Phys. J. D 71 (2017b) 73-6.
  • Reference[8] X. Ding, J. Yang, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, Theoretical investigation on the soft X-ray spectrum of the highly-charged W54+ ions, Journal of Quantitative Spectroscopy Radiative Transfer, 204 (2018a) 7–11.
  • Reference[9] X. Ding, R. Suna, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, Energy levels, lifetimes and radiative data of WLV, Atomic Data and Nuclear Data Tables 119 (2018b) 354–425.
  • Reference[10] Y. Ralchenko, I.N. Draganic, J.N. Tan, J.D. Gillaspy, J.M. Pomeroy, J. Reader, U. Feldman, G.E. Holland, EUV spectra of highly-charged ions W54+–W63+ relevant to ITER diagnostics, J. Phys. B 41 (2008) 021003-6.
  • Reference[11] Y. Ralchenko, I.N. Draganic, D. Osin, J.D. Gillaspy, J. Reader, Spectroscopy of diagnostically important magnetic-dipole lines in highly charged 3dn ions of tungsten, Physical Review A 83 (2011) 032517-10.
  • Reference[12] N.R. Badnell, A Breit–Pauli distorted wave implementation for AUTOSTRUCTURE, Comput. Phys. Commun. 182 (2011) 1528-1535.
  • Reference[13] W. Eissner, M. Jones, H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Commun. 8 (1974) 270-306.
Year 2018, , 1 - 6, 15.12.2018
https://doi.org/10.33435/tcandtc.391349

Abstract

References

  • Reference[14] N.R. Badnell, Dielectronic recombination of Fe 22+ and Fe21+, J. Phys. B 19 (1986) 3827-3835.
  • Reference[15] N.R. Badnell, On the effects of the two-body non-fine-structure operators of the Breit - Pauli Hamiltonian, J. Phys. B 30 (1997) 1-11.
  • Reference[16] C.F. Fischer, T. Brage, P. Jönsson, Computational Atomic Structure- An MCHF Approach, Institute of Physics Publishing, Bristol and Philadelphia, 1997.
  • Reference[1] C. Biedermann, R. Radtke, R. Seidel, T. Pütterich, Spectroscopy of highly charged tungsten ions relevant to fusion plasmas, Phys. Scr. T 134 (2009) 014026-6.
  • Reference[2] U.I. Safronova, A.S. Safronova, Wavelengths and transition rates for nl–n'l' transitions in Be-, B-, Mg, Al-, Ca-, Zn-, Ag- and Yb-like tungsten ions, J. Phys. B 43 (2010) 074026-15.
  • Reference[3] P. Quinet, Dirac–Fock calculations of forbidden transitions within the 3pk and 3dk ground configurations of highly charged tungsten ions (W47+–W61+),J. Phys. B 44 (2011) 195007-9.
  • Reference[4] X.L. Guo, M. Huang, J. Yan, S. Li, R. Si, C.Y. Li, C.Y. Chen, Y.S Wang, Y.M. Zou, Relativistic many-body calculations on wavelengths and transition probabilities for forbidden transitions within the 3dk ground configurations in Co- through K-like ions of hafnium, tantalum, tungsten and gold, J. Phys. B 48 (2015) 144020-18.
  • Reference[5] Z.L. Zhao, K. Wang, S. Li, R. Si, C.Y. Chen, Z.B. Chen, J. Yan, Y. Ralchenko, Multi-configuration Dirac–Hartree–Fock calculations of forbidden transitions within the 3dk ground configurations of highly charged ions (Z = 72–83), Atomic Data and Nuclear Data Tables 119 (2018) 314–353.
  • Reference[6] X. Ding, R. Sun, J. Liu, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, E1, M1, E2 transition energies and probabilities of W54+ ions, J. Phys. B 50 (2017a) 045004-9.
  • Reference[7] X. Ding, R. Sun, F. Koike, D. Kato, I. Murakami, H.A. Sakaue, C. Dong. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion, Eur. Phys. J. D 71 (2017b) 73-6.
  • Reference[8] X. Ding, J. Yang, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, Theoretical investigation on the soft X-ray spectrum of the highly-charged W54+ ions, Journal of Quantitative Spectroscopy Radiative Transfer, 204 (2018a) 7–11.
  • Reference[9] X. Ding, R. Suna, F. Koike, I. Murakami, D. Kato, H.A. Sakaue, N. Nakamura, C. Dong, Energy levels, lifetimes and radiative data of WLV, Atomic Data and Nuclear Data Tables 119 (2018b) 354–425.
  • Reference[10] Y. Ralchenko, I.N. Draganic, J.N. Tan, J.D. Gillaspy, J.M. Pomeroy, J. Reader, U. Feldman, G.E. Holland, EUV spectra of highly-charged ions W54+–W63+ relevant to ITER diagnostics, J. Phys. B 41 (2008) 021003-6.
  • Reference[11] Y. Ralchenko, I.N. Draganic, D. Osin, J.D. Gillaspy, J. Reader, Spectroscopy of diagnostically important magnetic-dipole lines in highly charged 3dn ions of tungsten, Physical Review A 83 (2011) 032517-10.
  • Reference[12] N.R. Badnell, A Breit–Pauli distorted wave implementation for AUTOSTRUCTURE, Comput. Phys. Commun. 182 (2011) 1528-1535.
  • Reference[13] W. Eissner, M. Jones, H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Commun. 8 (1974) 270-306.
There are 16 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Gülay Günday Konan

Leyla Özdemir

Publication Date December 15, 2018
Submission Date February 7, 2018
Published in Issue Year 2018

Cite

APA Günday Konan, G., & Özdemir, L. (2018). Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+. Turkish Computational and Theoretical Chemistry, 2(2), 1-6. https://doi.org/10.33435/tcandtc.391349
AMA Günday Konan G, Özdemir L. Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+. Turkish Comp Theo Chem (TC&TC). December 2018;2(2):1-6. doi:10.33435/tcandtc.391349
Chicago Günday Konan, Gülay, and Leyla Özdemir. “Radiative Transition Probabilities for 3p63d2 and 3p53d3 Transitions in W54+”. Turkish Computational and Theoretical Chemistry 2, no. 2 (December 2018): 1-6. https://doi.org/10.33435/tcandtc.391349.
EndNote Günday Konan G, Özdemir L (December 1, 2018) Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+. Turkish Computational and Theoretical Chemistry 2 2 1–6.
IEEE G. Günday Konan and L. Özdemir, “Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+”, Turkish Comp Theo Chem (TC&TC), vol. 2, no. 2, pp. 1–6, 2018, doi: 10.33435/tcandtc.391349.
ISNAD Günday Konan, Gülay - Özdemir, Leyla. “Radiative Transition Probabilities for 3p63d2 and 3p53d3 Transitions in W54+”. Turkish Computational and Theoretical Chemistry 2/2 (December 2018), 1-6. https://doi.org/10.33435/tcandtc.391349.
JAMA Günday Konan G, Özdemir L. Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+. Turkish Comp Theo Chem (TC&TC). 2018;2:1–6.
MLA Günday Konan, Gülay and Leyla Özdemir. “Radiative Transition Probabilities for 3p63d2 and 3p53d3 Transitions in W54+”. Turkish Computational and Theoretical Chemistry, vol. 2, no. 2, 2018, pp. 1-6, doi:10.33435/tcandtc.391349.
Vancouver Günday Konan G, Özdemir L. Radiative transition probabilities for 3p63d2 and 3p53d3 transitions in W54+. Turkish Comp Theo Chem (TC&TC). 2018;2(2):1-6.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)