Research Article
BibTex RIS Cite

2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies

Year 2021, , 27 - 38, 15.06.2021
https://doi.org/10.33435/tcandtc.843329

Abstract

In this work, the theoretical studies on the molecular structure are presented for 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its Ni(II) and Zn(II) complexes. The optimized molecular geometry and fundamental vibrational frequency values have been investigated with the help of DFT/B3LYP method using 6-31G(d,p) basis set and they are found to be in agreement with the experimental values. Additionally, frontier molecular orbital energies (HOMO, LUMO) and their energy gaps (∆E) are calculated by the same method. The HOMO and LUMO analysis are used to determine some molecular properties such as chemical potential, hardness, softness and electronegativity. Furthermore, Hirshfeld surface analyses and fingerprint plots have been used for visualizing and exploring intermolecular interactions in the crystal structure and for determining the percentage contribution of these interactions on the surface. The Hirshfeld surface analysis and the 2D fingerprint plots indicate that the crystal packing of the compounds is dominated by Cl···H/H···Cl, S···H/ H···S, N···H/ H···N and H···H contacts.

Thanks

The author thanks Muhittin Aygün from Dokuz Eylül University, Department of Physics for the use of the Gaussian 09W/G View package programs. Dokuz Eylül University for the use of the Oxford Rigaku Xcalibur Eos Diffractometer (purchased under University Research Grant No: 2010.KB.FEN.13) is also greatly acknowledged.

References

  • [1] R.K. Singh, A.K. Singh, Synthesis, molecular structure, spectral analysis, natural bond order and intramolecular interactions of 2-acetylpyridine thiosemicarbazone: a combined DFT and AIM approach. J. Mol.Struct.1094 (2015) 61-72.
  • [2] K. Alomar, M.A. Khan, M. Allain, G. Bouet, Synthesis, crystal structure, and characterization of 3-thiophene aldehyde thiosemicarbazone and its complexes with cobalt(II), nickel(II) and copper(II). Polyhedron 28 (2009) 1273-1280.
  • [3] T.S. Lobana, P. Kumari, M. Zeller, R.J. Butcher, The influence of the substituents at N1 nitrogen on geometry of nickel(II) complexes with heterocyclic thiosemicarbazones. Inorg. Chem. Commun. 11 (2008) 972-974.
  • [4] E. Pahonțu, C. Paraschivescu, D.-C. Ilieş, D. Poirier, C. Oprean, V. Pǎunescu, A. Gulea, T. Roşu, O. Bratu, Synthesis and Characterization of Novel Cu(II), Pd(II) and Pt(II) Complexes with 8-Ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13 onethiosemicarbazone: Antimicrobial and in Vitro Antiproliferative Activity. Molecules 21 (2016) 674–692.
  • [5] M.-X. Li, D. Zhang, L.-Z. Zhang, J.-Y. Niu, Synthesis, crystal structures, and biological activities of 2-thiophene N(4)-methylthiosemicarbazone and its unusual hexanuclear silver(I) cluster. Inorg. Chem. Commun. 13 (2010) 1268-1271.
  • [6] K. Alomar, A. Landreau, M. Kempf, M.A. Khan, M. Allain, G. Bouet, Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. J. Inorg. Biochem. 104 (2010) 397-404.
  • [7] R.A. Finch, M.C. Liu, S.P. Grill, W.C. Rose, R. Loomis, K.M. Vasquez, Y.C. Cheng, A.C. Sartorelli, Triapine (3-Aminopyridine-2-carboxaldehyde thiosemicarbazone): A Potent Inhibitor of Ribonucleotide Reductase Activity with Broad Spectrum Antitumor Activity. Biochem. Pharmacol. 59 (2000) 983-991.
  • [8] Z. Tavsan, P.K. Yaman, E. Subasi, H.A. Kayali, Screening organometallic thiophene containing thiosemicarbazone ruthenium (II/III) complexes as potential anti tumour agents. J. Biol. Inorg. Chem. 23 (2018) 425-435.
  • [9] M. Khandani, T. Sedaghat, N. Erfani, M.R. Haghshenas, H.R. Khavasi, Synthesis, spectroscopic characterization, structural studies and antibacterial and antitumor activities of diorganotin complexes with 3-methoxysalicylaldehyde thiosemicarbazone. J. Mol. Struct. 1037 (2013) 136-143.
  • [10] N. Öztürk, P. Kose Yaman, M. Yavuz, Ö. Öter, S. Timur, E. Subaşı, Synthesis, structural characterization, oxygen sensitivity, and antimicrobial activity of ruthenium(II) carbonyl complexes with thiosemicarbazones. J. Coordin. Chem. 67 (2014) 2688-2700.
  • [11] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds. Molecules 15 (2010) 988-996.
  • [12] P. Chellan, S. Nasser, L. Vivas, K.G.S. Smith, Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity. J. Organomet. Chem. 695 (2010) 2225-2232.
  • [13] S. Sharma, F. Athar, M. R. Maurya, A. Azam, Copper(II) complexes with substituted thiosemicarbazones of thiophene-2-carboxaldehyde: synthesis, characterization and antiamoebic activity against E. Histolytica. Eur. J. Med. Chem. 40 (2005) 1414-1419.
  • [14] N. Gokhale, S. Jain, M. Yadav, Design and Virtual Screening Towards Synthesis of Novel Substituted Thiosemicarbozones as Ribonuleotide Reductase (RNR) Inhibitors with Improved Cellular Trafficking and Anticancer Activity. Curr. Top. Med. Chem. 15 (2015) 37-42.
  • [15] B. Şen, H. K. Kalhan, V. Demir, E.E. Güler, H. Ayar Kayali, E. Subaşı, Crystal structures, spectroscopic properties of new cobalt(II), nickel(II), zinc (II) and palladium(II) complexes derived from 2-acetyl-5-chloro thiophene thiosemicarbazone: Anticancer evaluation Mater. Sci. Eng. C 98 (2019) 550-559.
  • [16] D.K. Demertzi, A. Domopoulou, M.A. Demertzis, G. Valle, A. Papageorgiou, Palladium(II) complexes of 2-acetylpyridine N(4)-methyl, N(4)-ethyl and N(4)-phenyl-thiosemicarbazones. Crystal structure of chloro(2-acetylpyridine N(4)-methylthiosemicarbazonato) palladium(II). Synthesis, spectral studies, in vitro and in vivo antitumour activity. J. Inorg. Biochem. 68 (1997) 147–155.
  • [17] Y. Tian, C. Duan, C. Zhao, X. You, T.C.W. Mak, Z.Y. Zhang, Synthesis, Crystal Structure, and Second-Order Optical Nonlinearity of Bis(2-chlorobenzaldehyde thiosemicarbazone)cadmium Halides (CdL2X2; X ) Br, I). Inorg. Chem. 36 (1997) 1247-1252.
  • [18] P. Kose Yaman, B. Şen, C.S. Karagoz, E. Subaşı, Half-sandwich ruthenium-arene complexes with thiophen containing thiosemicarbazones: Synthesis and structural characterization. J. Organomet. Chem. 832 (2017) 27-35.
  • [19] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993) 5648.
  • [20] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37 (1988) 785.
  • [21] A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72 (1980) 5639.
  • [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2013. [23] A. Frisch, H.P. Hratchian, R.D. Dennington, II, T.A. Keith, John Millam, B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Version 5.0.8, Gaussian Inc, Wallingford, CT, USA, 2009.
  • [24] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44 (1977) 129-138.
  • [25] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer 3.1 (2013), University of Western Australia, Crawley, Western Australia, 2005-2013, http://hirshfeldsurface.net/CrystalExplorer.
  • [26] M.A. Palafox, DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers. Phys. Sci. Rev. 3 (2018) 1-30.
  • [27] M. Szafran, A. Katrusiak, J. Koput, Z. Dega-Szafran, X-ray, MP2 and DFT studies of the structure, vibrational and NMR spectra of homarine. J. Mol. Struct.846 (2007) 1-12.
  • [28] J.A. Pople, H.B. Schlegel, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, R.F. Hout. W.J. Hehre, Molecular orbital studies of vibrational frequencies. Int. J. Quantum Chem. 15 (1981) 269-278.
  • [29] M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
  • [30] C.N.R. Rao, Chemical Application of Infrared Spectroscopy , Academic Press, New york,1981.
  • [31] N. Sundaraganesan, H. Saleem, S. Mohan, Spectrochimica Acta Part A, Vibrational spectra, assignments and normal coordinate analysis of 3-aminobenzyl alcohol. 59 (2003) 2511- 2517.
  • [32] S.Ya. Khorshev, N.S. Vyazankin, A.N. Egorochkin, E.A. Chernyshev, V.I. Savushkina, O.V. Kuz'min, V.Z. Anisimova, Spectroscopic study of organosilicon derivatives of thiophene. Chemistry of Heterocyclic Compounds, 10 (1974) 413–417.
  • [33] Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, Wiley, New York, 1974.
  • [34] A. Bondi, van der Waals Volumes and Radii. J.Phys.Chem. 68 (1964) 441-451.
Year 2021, , 27 - 38, 15.06.2021
https://doi.org/10.33435/tcandtc.843329

Abstract

References

  • [1] R.K. Singh, A.K. Singh, Synthesis, molecular structure, spectral analysis, natural bond order and intramolecular interactions of 2-acetylpyridine thiosemicarbazone: a combined DFT and AIM approach. J. Mol.Struct.1094 (2015) 61-72.
  • [2] K. Alomar, M.A. Khan, M. Allain, G. Bouet, Synthesis, crystal structure, and characterization of 3-thiophene aldehyde thiosemicarbazone and its complexes with cobalt(II), nickel(II) and copper(II). Polyhedron 28 (2009) 1273-1280.
  • [3] T.S. Lobana, P. Kumari, M. Zeller, R.J. Butcher, The influence of the substituents at N1 nitrogen on geometry of nickel(II) complexes with heterocyclic thiosemicarbazones. Inorg. Chem. Commun. 11 (2008) 972-974.
  • [4] E. Pahonțu, C. Paraschivescu, D.-C. Ilieş, D. Poirier, C. Oprean, V. Pǎunescu, A. Gulea, T. Roşu, O. Bratu, Synthesis and Characterization of Novel Cu(II), Pd(II) and Pt(II) Complexes with 8-Ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13 onethiosemicarbazone: Antimicrobial and in Vitro Antiproliferative Activity. Molecules 21 (2016) 674–692.
  • [5] M.-X. Li, D. Zhang, L.-Z. Zhang, J.-Y. Niu, Synthesis, crystal structures, and biological activities of 2-thiophene N(4)-methylthiosemicarbazone and its unusual hexanuclear silver(I) cluster. Inorg. Chem. Commun. 13 (2010) 1268-1271.
  • [6] K. Alomar, A. Landreau, M. Kempf, M.A. Khan, M. Allain, G. Bouet, Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. J. Inorg. Biochem. 104 (2010) 397-404.
  • [7] R.A. Finch, M.C. Liu, S.P. Grill, W.C. Rose, R. Loomis, K.M. Vasquez, Y.C. Cheng, A.C. Sartorelli, Triapine (3-Aminopyridine-2-carboxaldehyde thiosemicarbazone): A Potent Inhibitor of Ribonucleotide Reductase Activity with Broad Spectrum Antitumor Activity. Biochem. Pharmacol. 59 (2000) 983-991.
  • [8] Z. Tavsan, P.K. Yaman, E. Subasi, H.A. Kayali, Screening organometallic thiophene containing thiosemicarbazone ruthenium (II/III) complexes as potential anti tumour agents. J. Biol. Inorg. Chem. 23 (2018) 425-435.
  • [9] M. Khandani, T. Sedaghat, N. Erfani, M.R. Haghshenas, H.R. Khavasi, Synthesis, spectroscopic characterization, structural studies and antibacterial and antitumor activities of diorganotin complexes with 3-methoxysalicylaldehyde thiosemicarbazone. J. Mol. Struct. 1037 (2013) 136-143.
  • [10] N. Öztürk, P. Kose Yaman, M. Yavuz, Ö. Öter, S. Timur, E. Subaşı, Synthesis, structural characterization, oxygen sensitivity, and antimicrobial activity of ruthenium(II) carbonyl complexes with thiosemicarbazones. J. Coordin. Chem. 67 (2014) 2688-2700.
  • [11] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds. Molecules 15 (2010) 988-996.
  • [12] P. Chellan, S. Nasser, L. Vivas, K.G.S. Smith, Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity. J. Organomet. Chem. 695 (2010) 2225-2232.
  • [13] S. Sharma, F. Athar, M. R. Maurya, A. Azam, Copper(II) complexes with substituted thiosemicarbazones of thiophene-2-carboxaldehyde: synthesis, characterization and antiamoebic activity against E. Histolytica. Eur. J. Med. Chem. 40 (2005) 1414-1419.
  • [14] N. Gokhale, S. Jain, M. Yadav, Design and Virtual Screening Towards Synthesis of Novel Substituted Thiosemicarbozones as Ribonuleotide Reductase (RNR) Inhibitors with Improved Cellular Trafficking and Anticancer Activity. Curr. Top. Med. Chem. 15 (2015) 37-42.
  • [15] B. Şen, H. K. Kalhan, V. Demir, E.E. Güler, H. Ayar Kayali, E. Subaşı, Crystal structures, spectroscopic properties of new cobalt(II), nickel(II), zinc (II) and palladium(II) complexes derived from 2-acetyl-5-chloro thiophene thiosemicarbazone: Anticancer evaluation Mater. Sci. Eng. C 98 (2019) 550-559.
  • [16] D.K. Demertzi, A. Domopoulou, M.A. Demertzis, G. Valle, A. Papageorgiou, Palladium(II) complexes of 2-acetylpyridine N(4)-methyl, N(4)-ethyl and N(4)-phenyl-thiosemicarbazones. Crystal structure of chloro(2-acetylpyridine N(4)-methylthiosemicarbazonato) palladium(II). Synthesis, spectral studies, in vitro and in vivo antitumour activity. J. Inorg. Biochem. 68 (1997) 147–155.
  • [17] Y. Tian, C. Duan, C. Zhao, X. You, T.C.W. Mak, Z.Y. Zhang, Synthesis, Crystal Structure, and Second-Order Optical Nonlinearity of Bis(2-chlorobenzaldehyde thiosemicarbazone)cadmium Halides (CdL2X2; X ) Br, I). Inorg. Chem. 36 (1997) 1247-1252.
  • [18] P. Kose Yaman, B. Şen, C.S. Karagoz, E. Subaşı, Half-sandwich ruthenium-arene complexes with thiophen containing thiosemicarbazones: Synthesis and structural characterization. J. Organomet. Chem. 832 (2017) 27-35.
  • [19] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993) 5648.
  • [20] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37 (1988) 785.
  • [21] A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72 (1980) 5639.
  • [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2013. [23] A. Frisch, H.P. Hratchian, R.D. Dennington, II, T.A. Keith, John Millam, B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Version 5.0.8, Gaussian Inc, Wallingford, CT, USA, 2009.
  • [24] F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44 (1977) 129-138.
  • [25] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer 3.1 (2013), University of Western Australia, Crawley, Western Australia, 2005-2013, http://hirshfeldsurface.net/CrystalExplorer.
  • [26] M.A. Palafox, DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers. Phys. Sci. Rev. 3 (2018) 1-30.
  • [27] M. Szafran, A. Katrusiak, J. Koput, Z. Dega-Szafran, X-ray, MP2 and DFT studies of the structure, vibrational and NMR spectra of homarine. J. Mol. Struct.846 (2007) 1-12.
  • [28] J.A. Pople, H.B. Schlegel, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, R.F. Hout. W.J. Hehre, Molecular orbital studies of vibrational frequencies. Int. J. Quantum Chem. 15 (1981) 269-278.
  • [29] M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
  • [30] C.N.R. Rao, Chemical Application of Infrared Spectroscopy , Academic Press, New york,1981.
  • [31] N. Sundaraganesan, H. Saleem, S. Mohan, Spectrochimica Acta Part A, Vibrational spectra, assignments and normal coordinate analysis of 3-aminobenzyl alcohol. 59 (2003) 2511- 2517.
  • [32] S.Ya. Khorshev, N.S. Vyazankin, A.N. Egorochkin, E.A. Chernyshev, V.I. Savushkina, O.V. Kuz'min, V.Z. Anisimova, Spectroscopic study of organosilicon derivatives of thiophene. Chemistry of Heterocyclic Compounds, 10 (1974) 413–417.
  • [33] Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, Wiley, New York, 1974.
  • [34] A. Bondi, van der Waals Volumes and Radii. J.Phys.Chem. 68 (1964) 441-451.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Betül Şen 0000-0001-7846-8090

Publication Date June 15, 2021
Submission Date December 19, 2020
Published in Issue Year 2021

Cite

APA Şen, B. (2021). 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies. Turkish Computational and Theoretical Chemistry, 5(1), 27-38. https://doi.org/10.33435/tcandtc.843329
AMA Şen B. 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies. Turkish Comp Theo Chem (TC&TC). June 2021;5(1):27-38. doi:10.33435/tcandtc.843329
Chicago Şen, Betül. “2-Acetyl-5-Chloro-Thiophene Thiosemicarbazone and Its nickel(II) and zinc(II) Complexes: Hirshfeld Surface Analysis and Density Functional Theory Calculations for Molecular Geometry, Vibrational Spectra and HOMO-LUMO Studies”. Turkish Computational and Theoretical Chemistry 5, no. 1 (June 2021): 27-38. https://doi.org/10.33435/tcandtc.843329.
EndNote Şen B (June 1, 2021) 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies. Turkish Computational and Theoretical Chemistry 5 1 27–38.
IEEE B. Şen, “2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies”, Turkish Comp Theo Chem (TC&TC), vol. 5, no. 1, pp. 27–38, 2021, doi: 10.33435/tcandtc.843329.
ISNAD Şen, Betül. “2-Acetyl-5-Chloro-Thiophene Thiosemicarbazone and Its nickel(II) and zinc(II) Complexes: Hirshfeld Surface Analysis and Density Functional Theory Calculations for Molecular Geometry, Vibrational Spectra and HOMO-LUMO Studies”. Turkish Computational and Theoretical Chemistry 5/1 (June 2021), 27-38. https://doi.org/10.33435/tcandtc.843329.
JAMA Şen B. 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies. Turkish Comp Theo Chem (TC&TC). 2021;5:27–38.
MLA Şen, Betül. “2-Acetyl-5-Chloro-Thiophene Thiosemicarbazone and Its nickel(II) and zinc(II) Complexes: Hirshfeld Surface Analysis and Density Functional Theory Calculations for Molecular Geometry, Vibrational Spectra and HOMO-LUMO Studies”. Turkish Computational and Theoretical Chemistry, vol. 5, no. 1, 2021, pp. 27-38, doi:10.33435/tcandtc.843329.
Vancouver Şen B. 2-Acetyl-5-chloro-thiophene thiosemicarbazone and its nickel(II) and zinc(II) complexes: Hirshfeld surface analysis and Density Functional Theory calculations for molecular geometry, vibrational spectra and HOMO-LUMO studies. Turkish Comp Theo Chem (TC&TC). 2021;5(1):27-38.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)