Research Article
BibTex RIS Cite
Year 2021, , 24 - 34, 15.12.2021
https://doi.org/10.33435/tcandtc.926405

Abstract

References

  • [1] S. M. Rosenfeld, R. G. Lawlert and H. R. Ward, Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc. 837 (1973) 948–949.
  • [1] S. M. Rosenfeld, R. G. Lawlert and H. R. Ward, Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc. 837 (1973) 948–949.
  • [2] S. Rabaça, S. Oliveira, A. Cláudia, D. Simão, I. Cordeiro, M. Almeida, CyanobenzeneTTF-type donors; synthesis and characterization, J. Tetrahedron Letters. 55(2014) 6992–6997.
  • [3] V. A. Azov, Recent advances in molecular recognition with tetrathiafulvalene-based receptors, J. Tetrahedron Lett. 57(2016) 5416-5425.
  • [4] N. Martín, Tetrathiafulvalene: The advent of organic metals, J. Chem. Commun, 49(2013) 7025–7027.
  • [5] M. R. Bryce, Functionalised tetrathiafulvalenes: New applications as versatile π- electron systems in materials chemistry, J. Mater. Chem. 10(2000)589–598.
  • [6] J. L. Segura, N. Martn, New concepts in tetrathiafulvalene chemistry, J. Angew. Chemie - Int. Ed. 40(2001)1372–1409.
  • [7] M. B. Nielsen, C. Lomholt, J. Becher, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, J. Chem. Soc. Rev, 29 (2000) 153–164.
  • [7] M. B. Nielsen, C. Lomholt, J. Becher, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, J. Chem. Soc. Rev, 29 (2000) 153–164.
  • [8] M. Sallé, D. Zhang, D. Canevet, M. Salle, Tetrathiafulvalene ( TTF ) derivatives : key building-blocks for switchable processes, J. Chem. Commun.7345(2009)2245-2269
  • [9] E. Laukhina, V. Laukhin, and J. Veciana, Multistability in a BEDT-TTF Based Molecular Conductor, J. Am. Chem. Soc.125 (2003) 3948–3953.
  • [9] E. Laukhina, V. Laukhin, and J. Veciana, Multistability in a BEDT-TTF Based Molecular Conductor, J. Am. Chem. Soc.125 (2003) 3948–3953.
  • [10] L. Martin, Molecular conductors of BEDT-TTF with tris ( oxalato ) metallate anions, J. Coordination Chemistry. 376 (2018) 277-291.
  • [10] L. Martin, Molecular conductors of BEDT-TTF with tris ( oxalato ) metallate anions, J. Coordination Chemistry. 376 (2018) 277-291.
  • [11] N. Martín, D. M. Guldi, Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C 60 -based dyads, J. Chemical Communications. (2000) 113–114.
  • [11] N. Martín, D. M. Guldi, Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C 60 -based dyads, J. Chemical Communications. (2000) 113–114.
  • [12] J. Roncali, Linearly extended p -donors : when tetrathiafulvalene meets conjugated oligomers and polymers, J. Mater. Chem. 7 (1997) 2307–2321.
  • [12] J. Roncali, Linearly extended p -donors : when tetrathiafulvalene meets conjugated oligomers and polymers, J. Mater. Chem. 7 (1997) 2307–2321.
  • [13] A. Ayadi, TTF based donor-pi-acceptor dyads synthesized for NLO applications, J. Dye. Pigment. 138 (2016) 255-266.
  • [13] A. Ayadi, TTF based donor-pi-acceptor dyads synthesized for NLO applications, J. Dye. Pigment. 138 (2016) 255-266.
  • [14] T. K. Hansen, T. Jprrgensen, P. C. Stein, J. Becher, Crown Ether Derivatives of Tetrathiafulvalene . 1, J. Org. Chem. 57 (1992) 6403–6409.
  • [14] T. K. Hansen, T. Jprrgensen, P. C. Stein, J. Becher, Crown Ether Derivatives of Tetrathiafulvalene . 1, J. Org. Chem. 57 (1992) 6403–6409.
  • [15] C. Gime and C. J. Go, Hybrid Organic/Inorganic Molecular Materials Formed by Tetrathiafulvalene Radicals and Magnetic Trimeric Clusters of Dimetallic Oxalate‐Bridged Complexes: The Series (TTF)4{MII(H2O)2[MIII(ox)3]2}·nH2O (MII = Mn, Fe, Co, Ni, Cu and Zn; MIII = Cr and Fe; ox = C2O42−), Eur. J. Inorg. Chem. 2003 (2003) 2290-2298.
  • [15] C. Gime and C. J. Go, Hybrid Organic/Inorganic Molecular Materials Formed by Tetrathiafulvalene Radicals and Magnetic Trimeric Clusters of Dimetallic Oxalate‐Bridged Complexes: The Series (TTF)4{MII(H2O)2[MIII(ox)3]2}·nH2O (MII = Mn, Fe, Co, Ni, Cu and Zn; MIII = Cr and Fe; ox = C2O42−), Eur. J. Inorg. Chem. 2003 (2003) 2290-2298.
  • [16] H. Ringsdorf, H. Bengs, O. Karthaus, R. Wüstefeld, M.Ebert, J.H. Wendorff, B, Kohne, K.Praefcke, Induction and Variation of Discotic Columnar Phases through Doping with Electron Acceptors, J. Advanced materials. 2 (1990) 141–144.
  • [16] H. Ringsdorf, H. Bengs, O. Karthaus, R. Wüstefeld, M.Ebert, J.H. Wendorff, B, Kohne, K.Praefcke, Induction and Variation of Discotic Columnar Phases through Doping with Electron Acceptors, J. Advanced materials. 2 (1990) 141–144.
  • [17] M. R. Bryce, W. Devonport, L. M. Goldenberg, C. Wang, Macromolecular tetrathiafulvalene chemistry, J. Chem. Commun. (1998) 945–951.
  • [17] M. R. Bryce, W. Devonport, L. M. Goldenberg, C. Wang, Macromolecular tetrathiafulvalene chemistry, J. Chem. Commun. (1998) 945–951.
  • [18] M. Asakawa, A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit, J. Angew. Chem. Int. Ed. 37 (1998) 333–337.
  • [18] M. Asakawa, A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit, J. Angew. Chem. Int. Ed. 37 (1998) 333–337.
  • [19] P. W. Thulstrup, S. V. Hoffmann, N. C. Jones, J. Spanget-Larsen, Electronic transitions of tetrathiafulvalene oriented in polyethylene film - Near and vacuum UV synchrotron radiation polarization spectroscopy, J. Chem. Phys. Impact. 2 (2020) 2-21.
  • [19] P. W. Thulstrup, S. V. Hoffmann, N. C. Jones, J. Spanget-Larsen, Electronic transitions of tetrathiafulvalene oriented in polyethylene film - Near and vacuum UV synchrotron radiation polarization spectroscopy, J. Chem. Phys. Impact. 2 (2020) 2-21.
  • [20] X.Tian, F. QianMin, W. Liang, F. Zhang,D.Li,K. Guo, Z. Liu, J. Li, Synthesis and properties of triphenylamine functionalized tetrathiafulvalene, J. Tetrahedron Lett. 61 (2020) 1-4.
  • [20] X.Tian, F. QianMin, W. Liang, F. Zhang,D.Li,K. Guo, Z. Liu, J. Li, Synthesis and properties of triphenylamine functionalized tetrathiafulvalene, J. Tetrahedron Lett. 61 (2020) 1-4.
  • [21] X. Liu A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells, J. Mater. Chem. 6 (2018) 12912–12918.
  • [21] X. Liu A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells, J. Mater. Chem. 6 (2018) 12912–12918.
  • [22] J. Wang, K. Liu, L. Ma, X. Zhan, Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, J. Chem. Rev. 116 (2016) 14675–14725.
  • [22] J. Wang, K. Liu, L. Ma, X. Zhan, Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, J. Chem. Rev. 116 (2016) 14675–14725.
  • [23] R. Yuan Design, synthesis and photoelectrical properties of diphenylamine-containing triphenylamine-based D-D-π-A-type fluorescence dyes, J. Tetrahedron Lett. 60 (2019) 1803–1807.
  • [23] R. Yuan Design, synthesis and photoelectrical properties of diphenylamine-containing triphenylamine-based D-D-π-A-type fluorescence dyes, J. Tetrahedron Lett. 60 (2019) 1803–1807.
  • [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, J. Phys. Rev. A. 38 (1988) 3098-3100
  • [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, J. Phys. Rev. A. 38 (1988) 3098-3100
  • [25] C. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E .Scuseria, M. A. Robb et al. ( 2009) Gaussian 09, Revision A.02.
  • [26] P. Geerlings F. De Proft, Conceptual DFT: The chemical relevance of higher response functions, J. Phys. Chem. Chem. Phys. 10 (2008) 3028–3042.
  • [26] P. Geerlings F. De Proft, Conceptual DFT: The chemical relevance of higher response functions, J. Phys. Chem. Chem. Phys. 10 (2008) 3028–3042.
  • [27] P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem, J. Int. J. Quantum Chem. 101 (2005) 520–534.
  • [27] P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem, J. Int. J. Quantum Chem. 101 (2005) 520–534.
  • [28] R. G. Parr, C. Hill, N. Carolina, Electrophilicity Index,J. Am. Chem. Soc. 121 (1999) 1922–1924.
  • [28] R. G. Parr, C. Hill, N. Carolina, Electrophilicity Index,J. Am. Chem. Soc. 121 (1999) 1922–1924.
  • [29] J. Tirado-Rives, W. L. Jorgensen, Performance of B3LYP density functional methods for a large set of organic molecules, J. Chem. Theory Comput.4 (2008) 297–306.
  • [29] J. Tirado-Rives, W. L. Jorgensen, Performance of B3LYP density functional methods for a large set of organic molecules, J. Chem. Theory Comput.4 (2008) 297–306.
  • [30] M. M. C. Ferreira, E. Suto, Atomic Polar Tensor Transferabllity and Atomic Charges kr the Fluoromethane Series CHxF4-x, J. Phys. Chem. 96 (1992) 8844–8849.
  • [30] M. M. C. Ferreira, E. Suto, Atomic Polar Tensor Transferabllity and Atomic Charges kr the Fluoromethane Series CHxF4-x, J. Phys. Chem. 96 (1992) 8844–8849.
  • [31] F. J. Luque, J. M. López, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, J. Theor. Chem. Acc., 103 (2000) 343–345.
  • [31] F. J. Luque, J. M. López, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, J. Theor. Chem. Acc., 103 (2000) 343–345.
  • [32] G. Gogoi, S. R. Sahoo, B. K. Rajbongshi, S. Sahu, N. Sen Sarma, S. Sharma, New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3- benzochalcogenadiazoles: a computational study, J. Mol. Model. 25 (2019) 1-12.
  • [32] G. Gogoi, S. R. Sahoo, B. K. Rajbongshi, S. Sahu, N. Sen Sarma, S. Sharma, New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3- benzochalcogenadiazoles: a computational study, J. Mol. Model. 25 (2019) 1-12.
  • [33] S. R. Kumar, N. Vijay, K. Amarendra, P. Onkar, S. Leena, Theoretical Studies on the Isomers of Quinazolinone by first Principles, J. Res.J.Recent Sci. 1 (2012) 11–18.
  • [33] S. R. Kumar, N. Vijay, K. Amarendra, P. Onkar, S. Leena, Theoretical Studies on the Isomers of Quinazolinone by first Principles, J. Res.J.Recent Sci. 1 (2012) 11–18.
  • [34] A. Dreuw, M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin− Bacteriochlorin and, J. Am. Chem. Soc. 126 (2004) 4007–4016.
  • [34] A. Dreuw, M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin− Bacteriochlorin and, J. Am. Chem. Soc. 126 (2004) 4007–4016.
  • [35] Z. L. Zhang, L. Y. Zou, A. M. Ren, Y. F. Liu, J. K. Feng, C. C. Sun, Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers, J. Dye. Pigment. 96 (2013) 349–363.
  • [35] Z. L. Zhang, L. Y. Zou, A. M. Ren, Y. F. Liu, J. K. Feng, C. C. Sun, Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers, J. Dye. Pigment. 96 (2013) 349–363.
  • [36] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, Geometries and properties of excited states in the gas phase and in solution: Theory and application of a timedependent density functional theory polarizable continuum model, J. Chem. Phys. 124 (2006) 094-107.
  • [36] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, Geometries and properties of excited states in the gas phase and in solution: Theory and application of a timedependent density functional theory polarizable continuum model, J. Chem. Phys. 124 (2006) 094-107.
  • [37] S. K. Lanke and N. Sekar, Rigid Coumarins: A Complete DFT, TD-DFT and Non Linear Optical Property Study, Journal of Fluorescence. 25 (2015) 1469–1480.
  • [37] S. K. Lanke and N. Sekar, Rigid Coumarins: A Complete DFT, TD-DFT and Non Linear Optical Property Study, Journal of Fluorescence. 25 (2015) 1469–1480.
  • [38] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, J. Physica. 1 (1934) 104–113.
  • [38] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, J. Physica. 1 (1934) 104–113.
  • [39] Z. Zhou, R. G. Parr, New Measures of Aromaticity: Absolute Hardness and Relative Hardness, J. Am. Chem. Soc. 111 (1989) 7371–7379.
  • [39] Z. Zhou, R. G. Parr, New Measures of Aromaticity: Absolute Hardness and Relative Hardness, J. Am. Chem. Soc. 111 (1989) 7371–7379.
  • [40] R. G. Parr, R. G. Pearson, Absolute Hardness : Companion Parameter to Absolute Electronegativity, J. Am. Chem. SOC. 105 (1983) 7512–7516.
  • [40] R. G. Parr, R. G. Pearson, Absolute Hardness : Companion Parameter to Absolute Electronegativity, J. Am. Chem. SOC. 105 (1983) 7512–7516.
  • [41] M. Thirunavukkarasu , G. Balaji , S. Muthu , B R. Raajaraman , P. Ramesh, Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-Benzyloxycarbonyl-L-Aspartic acid 1-Benzyl ester, J. Chemical Data Collections. 31 (2021) 100622
  • [41] M. Thirunavukkarasu , G. Balaji , S. Muthu , B R. Raajaraman , P. Ramesh, Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-Benzyloxycarbonyl-L-Aspartic acid 1-Benzyl ester, J. Chemical Data Collections. 31 (2021) 100622
  • [42] A. E. REED, L. A. CURTISS, F. WEINHOLD, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, J. Chem. Rev. 88 (1988) 899-926
  • [42] A. E. REED, L. A. CURTISS, F. WEINHOLD, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, J. Chem. Rev. 88 (1988) 899-926
  • [43] M. Bourass, A. El Alamy, and M. Bouachrine, Comptes Rendus Chimie Structural and photophysical studies of triphenylamine-based nonlinear optical dyes : effects of p -linker moieties on the D- p -A structure, J. Comptes rendus - Chim., 22 (2019) 373–385.
  • [43] M. Bourass, A. El Alamy, and M. Bouachrine, Comptes Rendus Chimie Structural and photophysical studies of triphenylamine-based nonlinear optical dyes : effects of p -linker moieties on the D- p -A structure, J. Comptes rendus - Chim., 22 (2019) 373–385.
  • [44] M. Khalid , A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Rehman, C. J. Ennis, M. S. Akram, First principles study of electronic and nonlinear optical properties of A – D – p – A and D – A – D – p – A con fi gured compounds containing novel, J. RSC Adv. 10 (2020) 22273–22283.
  • [44] M. Khalid , A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Rehman, C. J. Ennis, M. S. Akram, First principles study of electronic and nonlinear optical properties of A – D – p – A and D – A – D – p – A con fi gured compounds containing novel, J. RSC Adv. 10 (2020) 22273–22283.
  • [45] A. Alparone, Static and Dynamic Electronic (Hyper)polarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis, J. Research Article. 2013 (2013) 1-9.
  • [45] A. Alparone, Static and Dynamic Electronic (Hyper)polarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis, J. Research Article. 2013 (2013) 1-9.

DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene

Year 2021, , 24 - 34, 15.12.2021
https://doi.org/10.33435/tcandtc.926405

Abstract

In this paper, we present a theoretical analysis of the molecular structure of a conjugated molecule TTPA-TTF at the DFT level using the B3LYP method and the 6-31G (d) basis set. The TTPA-TTF mole-cule presented a twisted configuration, which gave it good solubility in different organic solvents. The Partial atomic charge, molecular electrostatic potential (MEP) map, and global reactivity descriptors highlight the reactive sites of the molecule with the possible prediction of its reactivity. Moreover, a clear image of the intra- and intermolecular interactions illustrates hyperconjugative interactions based on the charge delocalization that emerges from the natural bond orbital analysis. The non-linear optical proper-ties of the TTPA-TTF molecule can also be calculated by determining their first hyperpolarizabilities. The time-dependent density theory method TD-DFT-B3LYP 6-31G (d) was used for the study of absorption. The obtained results show a broad spectrum in the visible range favorable to harvest solar light.

References

  • [1] S. M. Rosenfeld, R. G. Lawlert and H. R. Ward, Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc. 837 (1973) 948–949.
  • [1] S. M. Rosenfeld, R. G. Lawlert and H. R. Ward, Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc. 837 (1973) 948–949.
  • [2] S. Rabaça, S. Oliveira, A. Cláudia, D. Simão, I. Cordeiro, M. Almeida, CyanobenzeneTTF-type donors; synthesis and characterization, J. Tetrahedron Letters. 55(2014) 6992–6997.
  • [3] V. A. Azov, Recent advances in molecular recognition with tetrathiafulvalene-based receptors, J. Tetrahedron Lett. 57(2016) 5416-5425.
  • [4] N. Martín, Tetrathiafulvalene: The advent of organic metals, J. Chem. Commun, 49(2013) 7025–7027.
  • [5] M. R. Bryce, Functionalised tetrathiafulvalenes: New applications as versatile π- electron systems in materials chemistry, J. Mater. Chem. 10(2000)589–598.
  • [6] J. L. Segura, N. Martn, New concepts in tetrathiafulvalene chemistry, J. Angew. Chemie - Int. Ed. 40(2001)1372–1409.
  • [7] M. B. Nielsen, C. Lomholt, J. Becher, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, J. Chem. Soc. Rev, 29 (2000) 153–164.
  • [7] M. B. Nielsen, C. Lomholt, J. Becher, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, J. Chem. Soc. Rev, 29 (2000) 153–164.
  • [8] M. Sallé, D. Zhang, D. Canevet, M. Salle, Tetrathiafulvalene ( TTF ) derivatives : key building-blocks for switchable processes, J. Chem. Commun.7345(2009)2245-2269
  • [9] E. Laukhina, V. Laukhin, and J. Veciana, Multistability in a BEDT-TTF Based Molecular Conductor, J. Am. Chem. Soc.125 (2003) 3948–3953.
  • [9] E. Laukhina, V. Laukhin, and J. Veciana, Multistability in a BEDT-TTF Based Molecular Conductor, J. Am. Chem. Soc.125 (2003) 3948–3953.
  • [10] L. Martin, Molecular conductors of BEDT-TTF with tris ( oxalato ) metallate anions, J. Coordination Chemistry. 376 (2018) 277-291.
  • [10] L. Martin, Molecular conductors of BEDT-TTF with tris ( oxalato ) metallate anions, J. Coordination Chemistry. 376 (2018) 277-291.
  • [11] N. Martín, D. M. Guldi, Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C 60 -based dyads, J. Chemical Communications. (2000) 113–114.
  • [11] N. Martín, D. M. Guldi, Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C 60 -based dyads, J. Chemical Communications. (2000) 113–114.
  • [12] J. Roncali, Linearly extended p -donors : when tetrathiafulvalene meets conjugated oligomers and polymers, J. Mater. Chem. 7 (1997) 2307–2321.
  • [12] J. Roncali, Linearly extended p -donors : when tetrathiafulvalene meets conjugated oligomers and polymers, J. Mater. Chem. 7 (1997) 2307–2321.
  • [13] A. Ayadi, TTF based donor-pi-acceptor dyads synthesized for NLO applications, J. Dye. Pigment. 138 (2016) 255-266.
  • [13] A. Ayadi, TTF based donor-pi-acceptor dyads synthesized for NLO applications, J. Dye. Pigment. 138 (2016) 255-266.
  • [14] T. K. Hansen, T. Jprrgensen, P. C. Stein, J. Becher, Crown Ether Derivatives of Tetrathiafulvalene . 1, J. Org. Chem. 57 (1992) 6403–6409.
  • [14] T. K. Hansen, T. Jprrgensen, P. C. Stein, J. Becher, Crown Ether Derivatives of Tetrathiafulvalene . 1, J. Org. Chem. 57 (1992) 6403–6409.
  • [15] C. Gime and C. J. Go, Hybrid Organic/Inorganic Molecular Materials Formed by Tetrathiafulvalene Radicals and Magnetic Trimeric Clusters of Dimetallic Oxalate‐Bridged Complexes: The Series (TTF)4{MII(H2O)2[MIII(ox)3]2}·nH2O (MII = Mn, Fe, Co, Ni, Cu and Zn; MIII = Cr and Fe; ox = C2O42−), Eur. J. Inorg. Chem. 2003 (2003) 2290-2298.
  • [15] C. Gime and C. J. Go, Hybrid Organic/Inorganic Molecular Materials Formed by Tetrathiafulvalene Radicals and Magnetic Trimeric Clusters of Dimetallic Oxalate‐Bridged Complexes: The Series (TTF)4{MII(H2O)2[MIII(ox)3]2}·nH2O (MII = Mn, Fe, Co, Ni, Cu and Zn; MIII = Cr and Fe; ox = C2O42−), Eur. J. Inorg. Chem. 2003 (2003) 2290-2298.
  • [16] H. Ringsdorf, H. Bengs, O. Karthaus, R. Wüstefeld, M.Ebert, J.H. Wendorff, B, Kohne, K.Praefcke, Induction and Variation of Discotic Columnar Phases through Doping with Electron Acceptors, J. Advanced materials. 2 (1990) 141–144.
  • [16] H. Ringsdorf, H. Bengs, O. Karthaus, R. Wüstefeld, M.Ebert, J.H. Wendorff, B, Kohne, K.Praefcke, Induction and Variation of Discotic Columnar Phases through Doping with Electron Acceptors, J. Advanced materials. 2 (1990) 141–144.
  • [17] M. R. Bryce, W. Devonport, L. M. Goldenberg, C. Wang, Macromolecular tetrathiafulvalene chemistry, J. Chem. Commun. (1998) 945–951.
  • [17] M. R. Bryce, W. Devonport, L. M. Goldenberg, C. Wang, Macromolecular tetrathiafulvalene chemistry, J. Chem. Commun. (1998) 945–951.
  • [18] M. Asakawa, A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit, J. Angew. Chem. Int. Ed. 37 (1998) 333–337.
  • [18] M. Asakawa, A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit, J. Angew. Chem. Int. Ed. 37 (1998) 333–337.
  • [19] P. W. Thulstrup, S. V. Hoffmann, N. C. Jones, J. Spanget-Larsen, Electronic transitions of tetrathiafulvalene oriented in polyethylene film - Near and vacuum UV synchrotron radiation polarization spectroscopy, J. Chem. Phys. Impact. 2 (2020) 2-21.
  • [19] P. W. Thulstrup, S. V. Hoffmann, N. C. Jones, J. Spanget-Larsen, Electronic transitions of tetrathiafulvalene oriented in polyethylene film - Near and vacuum UV synchrotron radiation polarization spectroscopy, J. Chem. Phys. Impact. 2 (2020) 2-21.
  • [20] X.Tian, F. QianMin, W. Liang, F. Zhang,D.Li,K. Guo, Z. Liu, J. Li, Synthesis and properties of triphenylamine functionalized tetrathiafulvalene, J. Tetrahedron Lett. 61 (2020) 1-4.
  • [20] X.Tian, F. QianMin, W. Liang, F. Zhang,D.Li,K. Guo, Z. Liu, J. Li, Synthesis and properties of triphenylamine functionalized tetrathiafulvalene, J. Tetrahedron Lett. 61 (2020) 1-4.
  • [21] X. Liu A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells, J. Mater. Chem. 6 (2018) 12912–12918.
  • [21] X. Liu A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells, J. Mater. Chem. 6 (2018) 12912–12918.
  • [22] J. Wang, K. Liu, L. Ma, X. Zhan, Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, J. Chem. Rev. 116 (2016) 14675–14725.
  • [22] J. Wang, K. Liu, L. Ma, X. Zhan, Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells, J. Chem. Rev. 116 (2016) 14675–14725.
  • [23] R. Yuan Design, synthesis and photoelectrical properties of diphenylamine-containing triphenylamine-based D-D-π-A-type fluorescence dyes, J. Tetrahedron Lett. 60 (2019) 1803–1807.
  • [23] R. Yuan Design, synthesis and photoelectrical properties of diphenylamine-containing triphenylamine-based D-D-π-A-type fluorescence dyes, J. Tetrahedron Lett. 60 (2019) 1803–1807.
  • [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, J. Phys. Rev. A. 38 (1988) 3098-3100
  • [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, J. Phys. Rev. A. 38 (1988) 3098-3100
  • [25] C. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E .Scuseria, M. A. Robb et al. ( 2009) Gaussian 09, Revision A.02.
  • [26] P. Geerlings F. De Proft, Conceptual DFT: The chemical relevance of higher response functions, J. Phys. Chem. Chem. Phys. 10 (2008) 3028–3042.
  • [26] P. Geerlings F. De Proft, Conceptual DFT: The chemical relevance of higher response functions, J. Phys. Chem. Chem. Phys. 10 (2008) 3028–3042.
  • [27] P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem, J. Int. J. Quantum Chem. 101 (2005) 520–534.
  • [27] P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem, J. Int. J. Quantum Chem. 101 (2005) 520–534.
  • [28] R. G. Parr, C. Hill, N. Carolina, Electrophilicity Index,J. Am. Chem. Soc. 121 (1999) 1922–1924.
  • [28] R. G. Parr, C. Hill, N. Carolina, Electrophilicity Index,J. Am. Chem. Soc. 121 (1999) 1922–1924.
  • [29] J. Tirado-Rives, W. L. Jorgensen, Performance of B3LYP density functional methods for a large set of organic molecules, J. Chem. Theory Comput.4 (2008) 297–306.
  • [29] J. Tirado-Rives, W. L. Jorgensen, Performance of B3LYP density functional methods for a large set of organic molecules, J. Chem. Theory Comput.4 (2008) 297–306.
  • [30] M. M. C. Ferreira, E. Suto, Atomic Polar Tensor Transferabllity and Atomic Charges kr the Fluoromethane Series CHxF4-x, J. Phys. Chem. 96 (1992) 8844–8849.
  • [30] M. M. C. Ferreira, E. Suto, Atomic Polar Tensor Transferabllity and Atomic Charges kr the Fluoromethane Series CHxF4-x, J. Phys. Chem. 96 (1992) 8844–8849.
  • [31] F. J. Luque, J. M. López, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, J. Theor. Chem. Acc., 103 (2000) 343–345.
  • [31] F. J. Luque, J. M. López, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, J. Theor. Chem. Acc., 103 (2000) 343–345.
  • [32] G. Gogoi, S. R. Sahoo, B. K. Rajbongshi, S. Sahu, N. Sen Sarma, S. Sharma, New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3- benzochalcogenadiazoles: a computational study, J. Mol. Model. 25 (2019) 1-12.
  • [32] G. Gogoi, S. R. Sahoo, B. K. Rajbongshi, S. Sahu, N. Sen Sarma, S. Sharma, New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3- benzochalcogenadiazoles: a computational study, J. Mol. Model. 25 (2019) 1-12.
  • [33] S. R. Kumar, N. Vijay, K. Amarendra, P. Onkar, S. Leena, Theoretical Studies on the Isomers of Quinazolinone by first Principles, J. Res.J.Recent Sci. 1 (2012) 11–18.
  • [33] S. R. Kumar, N. Vijay, K. Amarendra, P. Onkar, S. Leena, Theoretical Studies on the Isomers of Quinazolinone by first Principles, J. Res.J.Recent Sci. 1 (2012) 11–18.
  • [34] A. Dreuw, M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin− Bacteriochlorin and, J. Am. Chem. Soc. 126 (2004) 4007–4016.
  • [34] A. Dreuw, M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin− Bacteriochlorin and, J. Am. Chem. Soc. 126 (2004) 4007–4016.
  • [35] Z. L. Zhang, L. Y. Zou, A. M. Ren, Y. F. Liu, J. K. Feng, C. C. Sun, Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers, J. Dye. Pigment. 96 (2013) 349–363.
  • [35] Z. L. Zhang, L. Y. Zou, A. M. Ren, Y. F. Liu, J. K. Feng, C. C. Sun, Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers, J. Dye. Pigment. 96 (2013) 349–363.
  • [36] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, Geometries and properties of excited states in the gas phase and in solution: Theory and application of a timedependent density functional theory polarizable continuum model, J. Chem. Phys. 124 (2006) 094-107.
  • [36] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, Geometries and properties of excited states in the gas phase and in solution: Theory and application of a timedependent density functional theory polarizable continuum model, J. Chem. Phys. 124 (2006) 094-107.
  • [37] S. K. Lanke and N. Sekar, Rigid Coumarins: A Complete DFT, TD-DFT and Non Linear Optical Property Study, Journal of Fluorescence. 25 (2015) 1469–1480.
  • [37] S. K. Lanke and N. Sekar, Rigid Coumarins: A Complete DFT, TD-DFT and Non Linear Optical Property Study, Journal of Fluorescence. 25 (2015) 1469–1480.
  • [38] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, J. Physica. 1 (1934) 104–113.
  • [38] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, J. Physica. 1 (1934) 104–113.
  • [39] Z. Zhou, R. G. Parr, New Measures of Aromaticity: Absolute Hardness and Relative Hardness, J. Am. Chem. Soc. 111 (1989) 7371–7379.
  • [39] Z. Zhou, R. G. Parr, New Measures of Aromaticity: Absolute Hardness and Relative Hardness, J. Am. Chem. Soc. 111 (1989) 7371–7379.
  • [40] R. G. Parr, R. G. Pearson, Absolute Hardness : Companion Parameter to Absolute Electronegativity, J. Am. Chem. SOC. 105 (1983) 7512–7516.
  • [40] R. G. Parr, R. G. Pearson, Absolute Hardness : Companion Parameter to Absolute Electronegativity, J. Am. Chem. SOC. 105 (1983) 7512–7516.
  • [41] M. Thirunavukkarasu , G. Balaji , S. Muthu , B R. Raajaraman , P. Ramesh, Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-Benzyloxycarbonyl-L-Aspartic acid 1-Benzyl ester, J. Chemical Data Collections. 31 (2021) 100622
  • [41] M. Thirunavukkarasu , G. Balaji , S. Muthu , B R. Raajaraman , P. Ramesh, Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-Benzyloxycarbonyl-L-Aspartic acid 1-Benzyl ester, J. Chemical Data Collections. 31 (2021) 100622
  • [42] A. E. REED, L. A. CURTISS, F. WEINHOLD, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, J. Chem. Rev. 88 (1988) 899-926
  • [42] A. E. REED, L. A. CURTISS, F. WEINHOLD, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, J. Chem. Rev. 88 (1988) 899-926
  • [43] M. Bourass, A. El Alamy, and M. Bouachrine, Comptes Rendus Chimie Structural and photophysical studies of triphenylamine-based nonlinear optical dyes : effects of p -linker moieties on the D- p -A structure, J. Comptes rendus - Chim., 22 (2019) 373–385.
  • [43] M. Bourass, A. El Alamy, and M. Bouachrine, Comptes Rendus Chimie Structural and photophysical studies of triphenylamine-based nonlinear optical dyes : effects of p -linker moieties on the D- p -A structure, J. Comptes rendus - Chim., 22 (2019) 373–385.
  • [44] M. Khalid , A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Rehman, C. J. Ennis, M. S. Akram, First principles study of electronic and nonlinear optical properties of A – D – p – A and D – A – D – p – A con fi gured compounds containing novel, J. RSC Adv. 10 (2020) 22273–22283.
  • [44] M. Khalid , A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Rehman, C. J. Ennis, M. S. Akram, First principles study of electronic and nonlinear optical properties of A – D – p – A and D – A – D – p – A con fi gured compounds containing novel, J. RSC Adv. 10 (2020) 22273–22283.
  • [45] A. Alparone, Static and Dynamic Electronic (Hyper)polarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis, J. Research Article. 2013 (2013) 1-9.
  • [45] A. Alparone, Static and Dynamic Electronic (Hyper)polarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis, J. Research Article. 2013 (2013) 1-9.
There are 83 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Mohammed Bouachrıne 0000-0002-8901-047X

Ahmed Azaıd 0000-0002-8741-098X

Tayeb Abram 0000-0002-0450-0753

Rchid Kacimi 0000-0002-2295-1857

Marzouk Raftanı 0000-0001-7387-1948

Abdelouahid Sbai 0000-0002-7140-9853

Tahar Lakhlıfı 0000-0001-6707-9057

Publication Date December 15, 2021
Submission Date April 22, 2021
Published in Issue Year 2021

Cite

APA Bouachrıne, M., Azaıd, A., Abram, T., Kacimi, R., et al. (2021). DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Computational and Theoretical Chemistry, 5(2), 24-34. https://doi.org/10.33435/tcandtc.926405
AMA Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T. DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Comp Theo Chem (TC&TC). December 2021;5(2):24-34. doi:10.33435/tcandtc.926405
Chicago Bouachrıne, Mohammed, Ahmed Azaıd, Tayeb Abram, Rchid Kacimi, Marzouk Raftanı, Abdelouahid Sbai, and Tahar Lakhlıfı. “DFT/TDDFT Studies of the Structural, Electronic, NBO and Non-Linear Optical Proper-Ties of Triphenylamine Functionalized Tetrathiafulvalene”. Turkish Computational and Theoretical Chemistry 5, no. 2 (December 2021): 24-34. https://doi.org/10.33435/tcandtc.926405.
EndNote Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T (December 1, 2021) DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Computational and Theoretical Chemistry 5 2 24–34.
IEEE M. Bouachrıne, A. Azaıd, T. Abram, R. Kacimi, M. Raftanı, A. Sbai, and T. Lakhlıfı, “DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene”, Turkish Comp Theo Chem (TC&TC), vol. 5, no. 2, pp. 24–34, 2021, doi: 10.33435/tcandtc.926405.
ISNAD Bouachrıne, Mohammed et al. “DFT/TDDFT Studies of the Structural, Electronic, NBO and Non-Linear Optical Proper-Ties of Triphenylamine Functionalized Tetrathiafulvalene”. Turkish Computational and Theoretical Chemistry 5/2 (December 2021), 24-34. https://doi.org/10.33435/tcandtc.926405.
JAMA Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T. DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Comp Theo Chem (TC&TC). 2021;5:24–34.
MLA Bouachrıne, Mohammed et al. “DFT/TDDFT Studies of the Structural, Electronic, NBO and Non-Linear Optical Proper-Ties of Triphenylamine Functionalized Tetrathiafulvalene”. Turkish Computational and Theoretical Chemistry, vol. 5, no. 2, 2021, pp. 24-34, doi:10.33435/tcandtc.926405.
Vancouver Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T. DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Comp Theo Chem (TC&TC). 2021;5(2):24-3.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)