Research Article
BibTex RIS Cite

CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study

Year 2017, Volume: 1 Issue: 1, 17 - 26, 15.06.2017

Abstract

Maximizing the
utilization of CO2 through mimicking its activation by nature to
form H2CO3 is considered and tested. The active site
present in the carbonic anhydrase was chosen as the model and various electron
releasing and withdrawing substituents were introduced in the imidazole rings
to alter the activity of the enzyme model. To compare their activities, the
mechanistic pathway was probed for the pure and substituted models employing
DFT/B3LYP level of theory. Optimization was performed on structures and the
computed energies were used for elucidating the mechanistic pathway. The study
reveals that the designed active site model that mimics the nature’s process,
yields results similar to those observed in nature. The study will help the
process of capturing and activation of CO2 effectively to form H2CO3.

References

  • G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148 (2009) 191-205.
  • A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L. DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation, Chemical Reviews, 113 (2013) 6621-6658.
  • M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges, Dalton transactions, 28 (2007) 2975-2992.
  • S. Schenk, J. Notni, U. Kohn, K. Wermann, E. Anders, Carbon dioxide and related heterocumulenes at zinc and lithium cations: bioinspired reactions and principles, Dalton transactions, 35 (2006) 4191-4206.
  • G. Parkin, Synthetic Analogues Relevant to the Structure and Function of Zinc Enzymes, Chemical Reviews, 104 (2004) 699-768.
  • [6] M. Raynal, P. Ballester, A. Vidal-Ferran, P.W.N.M. van Leeuwen, Supramolecular catalysis. Part 2: artificial enzyme mimics, Chemical Society reviews, 43 (2014) 1734-1787.
  • T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero, Mimicking hydrogenases: From biomimetics to artificial enzymes, Coord. Chem. Rev., 270–271 (2014) 127-150.
  • M.J. Wiester, P.A. Ulmann, C.A. Mirkin, Enzyme Mimics Based Upon Supramolecular Coordination Chemistry, Angewandte Chemie International Edition, 50 (2011) 114-137.
  • C. Raksakoon, T. Maihom, M. Probst, J. Limtrakul, Hydration of Carbon Dioxide in Copper-Alkoxide Functionalized Metal–Organic Frameworks: A DFT Study, The Journal of Physical Chemistry C, 119 (2015) 3564-3571.
  • M. Verma, K.B. Sravan Kumar, P.A. Deshpande, Computational Insights into the Activity of Transition Metals for Biomimetic CO2 Hydration, The Journal of Physical Chemistry C, 120 (2016) 5577-5584.
  • G. Jin, C.G. Werncke, Y. Escudié, S. Sabo-Etienne, S. Bontemps, Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds, Journal of the American Chemical Society, 137 (2015) 9563-9566.
  • S. Bagherzadeh, N.P. Mankad, Catalyst Control of Selectivity in CO2 Reduction Using a Tunable Heterobimetallic Effect, Journal of the American Chemical Society, 137 (2015) 10898-10901.
  • C.C. Chong, R. Kinjo, Hydrophosphination of CO2 and Subsequent Formate Transfer in the 1,3,2-Diazaphospholene-Catalyzed N-Formylation of Amines, Angewandte Chemie, 127 (2015) 12284-12288.
  • Q. Liu, Z.-X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel, J. Mater. Chem. A., 1 (2013) 11563-11563.
  • H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv., 4 (2014) 54454-54462.
  • S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO2 under Mild Reaction Conditions, Angewandte Chemie International Edition, 53 (2014) 1034-1038.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009, Gaussian Revision C.01.
  • F. Pannetier, G. Ohanessian, G. Frison, Comparison between [small alpha]- and [small beta]-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys).2(H2O) sites lead to equivalent enzymes?, Dalton transactions, 40 (2011) 2696-2698.
Year 2017, Volume: 1 Issue: 1, 17 - 26, 15.06.2017

Abstract

References

  • G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148 (2009) 191-205.
  • A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L. DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation, Chemical Reviews, 113 (2013) 6621-6658.
  • M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges, Dalton transactions, 28 (2007) 2975-2992.
  • S. Schenk, J. Notni, U. Kohn, K. Wermann, E. Anders, Carbon dioxide and related heterocumulenes at zinc and lithium cations: bioinspired reactions and principles, Dalton transactions, 35 (2006) 4191-4206.
  • G. Parkin, Synthetic Analogues Relevant to the Structure and Function of Zinc Enzymes, Chemical Reviews, 104 (2004) 699-768.
  • [6] M. Raynal, P. Ballester, A. Vidal-Ferran, P.W.N.M. van Leeuwen, Supramolecular catalysis. Part 2: artificial enzyme mimics, Chemical Society reviews, 43 (2014) 1734-1787.
  • T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero, Mimicking hydrogenases: From biomimetics to artificial enzymes, Coord. Chem. Rev., 270–271 (2014) 127-150.
  • M.J. Wiester, P.A. Ulmann, C.A. Mirkin, Enzyme Mimics Based Upon Supramolecular Coordination Chemistry, Angewandte Chemie International Edition, 50 (2011) 114-137.
  • C. Raksakoon, T. Maihom, M. Probst, J. Limtrakul, Hydration of Carbon Dioxide in Copper-Alkoxide Functionalized Metal–Organic Frameworks: A DFT Study, The Journal of Physical Chemistry C, 119 (2015) 3564-3571.
  • M. Verma, K.B. Sravan Kumar, P.A. Deshpande, Computational Insights into the Activity of Transition Metals for Biomimetic CO2 Hydration, The Journal of Physical Chemistry C, 120 (2016) 5577-5584.
  • G. Jin, C.G. Werncke, Y. Escudié, S. Sabo-Etienne, S. Bontemps, Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds, Journal of the American Chemical Society, 137 (2015) 9563-9566.
  • S. Bagherzadeh, N.P. Mankad, Catalyst Control of Selectivity in CO2 Reduction Using a Tunable Heterobimetallic Effect, Journal of the American Chemical Society, 137 (2015) 10898-10901.
  • C.C. Chong, R. Kinjo, Hydrophosphination of CO2 and Subsequent Formate Transfer in the 1,3,2-Diazaphospholene-Catalyzed N-Formylation of Amines, Angewandte Chemie, 127 (2015) 12284-12288.
  • Q. Liu, Z.-X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel, J. Mater. Chem. A., 1 (2013) 11563-11563.
  • H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv., 4 (2014) 54454-54462.
  • S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO2 under Mild Reaction Conditions, Angewandte Chemie International Edition, 53 (2014) 1034-1038.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009, Gaussian Revision C.01.
  • F. Pannetier, G. Ohanessian, G. Frison, Comparison between [small alpha]- and [small beta]-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys).2(H2O) sites lead to equivalent enzymes?, Dalton transactions, 40 (2011) 2696-2698.
There are 18 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Article
Authors

Balasubramanian Vıswanathan

Ramasamy Shanmugam

Arunachalam Thamaraıchelvan This is me

Publication Date June 15, 2017
Submission Date March 23, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite

APA Vıswanathan, B., Shanmugam, R., & Thamaraıchelvan, A. (2017). CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study. Turkish Computational and Theoretical Chemistry, 1(1), 17-26.
AMA Vıswanathan B, Shanmugam R, Thamaraıchelvan A. CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study. Turkish Comp Theo Chem (TC&TC). June 2017;1(1):17-26.
Chicago Vıswanathan, Balasubramanian, Ramasamy Shanmugam, and Arunachalam Thamaraıchelvan. “CO2 Transformation on the Active Site of Carbonic Anhydrase Enzyme Leading to Formation of H2CO3 - A Biomimetic Model through Computational Study”. Turkish Computational and Theoretical Chemistry 1, no. 1 (June 2017): 17-26.
EndNote Vıswanathan B, Shanmugam R, Thamaraıchelvan A (June 1, 2017) CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study. Turkish Computational and Theoretical Chemistry 1 1 17–26.
IEEE B. Vıswanathan, R. Shanmugam, and A. Thamaraıchelvan, “CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study”, Turkish Comp Theo Chem (TC&TC), vol. 1, no. 1, pp. 17–26, 2017.
ISNAD Vıswanathan, Balasubramanian et al. “CO2 Transformation on the Active Site of Carbonic Anhydrase Enzyme Leading to Formation of H2CO3 - A Biomimetic Model through Computational Study”. Turkish Computational and Theoretical Chemistry 1/1 (June 2017), 17-26.
JAMA Vıswanathan B, Shanmugam R, Thamaraıchelvan A. CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study. Turkish Comp Theo Chem (TC&TC). 2017;1:17–26.
MLA Vıswanathan, Balasubramanian et al. “CO2 Transformation on the Active Site of Carbonic Anhydrase Enzyme Leading to Formation of H2CO3 - A Biomimetic Model through Computational Study”. Turkish Computational and Theoretical Chemistry, vol. 1, no. 1, 2017, pp. 17-26.
Vancouver Vıswanathan B, Shanmugam R, Thamaraıchelvan A. CO2 transformation on the active site of carbonic anhydrase enzyme leading to formation of H2CO3 - A biomimetic model through computational study. Turkish Comp Theo Chem (TC&TC). 2017;1(1):17-26.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)