Research Article
BibTex RIS Cite

Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness

Year 2018, Volume: 2 Issue: 2, 7 - 15, 15.12.2018
https://doi.org/10.33435/tcandtc.379540

Abstract

Chemical hardness of 62 molecules are calculated at different 18  levels. No imaginary frequency is observed in optimization results for each level. Correlation between experimental and calculated hardness values are investigated. To analyze this investigation, correlation coefficient and scale factor are calculated for each level. As a result, HF method is better in the calculation of chemical hardness and molecular orbital energy than B3LYP and MP2 methods.

References

  • [1] P. Jankowski, W. Wieczorek, P. Johansson, SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches, J Mol Model 23:6 (2017) 3-9.
  • [2] Juan Frau, Noemi Hernández-Haro, Daniel Glossman-Mitnik, Computational prediction of the pKas of small peptides through Conceptual DFT descriptors, Chemical Physics Letters 671 (2017) 138–141.
  • [3] Meryem Evecen, Hasan Tanak, DFT quantum chemical studies of (E)-4-Bromo-N-(2- chlorobenzylidene)-aniline, Appl. Phys. A, 123: 91 (2017) 1-6.
  • [4] Samaneh Bagheri Novir, Seyed Majid Hashemianzadeh, Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells, Computational and Theoretical Chemistry 1102 (2017) 87–97.
  • [5] Sadegh Kaviani, Mohammad Izadyar, Mohammad Reza Housaindokht Kaviani, A DFT study on the complex formation between desferrithiocin and metal ions (Mg2+, Al3+, Ca2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+), Computational Biology and Chemistry 67 (2017) 114–121.
  • [6] Mehmet Ferdi Fellah, A DFT study of hydrogen adsorption on Be, Mg and Ca frameworks in erionite zeolite, Applied Surface Science 394 (2017) 9–15.
  • [7] H. Moustafa, Mohamed E. Elshakre, Salwa Elramly, Electronic structure and nonlinear optical properties (NLO) of 2,4-di-aryl-1,5-benzothiazepine derivatives using DFT approach, Journal of Molecular Structure 1136 (2017) 25-36.
  • [8] Subhajit Mukherjee, Venkata P. Reddy B., Ishani Mitra, Sankar Ch. Moi, In vitro kinetic based adduct formation mechanism of a cytotoxic Pt(II) complex with sulfur containing bio-relevant molecules and a theoretical approach, Polyhedron 124 (2017) 251–261.
  • [9] Jonas Šarlauskas, Jelena Tamulienė, Narimantas Čėnas, Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 178 (2017) 136–141.
  • [10] R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc. 85 (1963) 3533.
  • [11] John J Gilman, Chemica and physical “hardness”, Mat. Res. Innovat. 1 (1997) 71.
  • [12] Robert G Parr, Ralph G Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105 (1983) 7512.
  • [13] Mihai V. Putz, Nino Russo, Emilia Sicilia, On the Applicability of the HSAB Principle through the Use of Improved Computational Schemes for Chemical Hardness Evaluation, Journal of Computational Chemistry 25 (2004) 994-1003.
  • [14] K. Sayin, S. E. Kariper, T. A. Sayin, D. Karakaş, Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [15] W. Loued, J. Wéry, A. Dorlando, K. Alimi, A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment, Journal of Molecular Structure 1081 (2015) 486–493
  • [16] Huicen Zhu, Weimin Guo, Zhemin Shen, Qingli Tang, Wenchao Ji, Lijuan Jia, QSAR models for degradation of organic pollutants in ozonation process under acidic condition, Chemosphere 119 (2015) 65–71.
  • [17] Walaa H. Mahmoud, Nessma F. Mahmoud, Gehad G. Mohamed, Ashraf A. El-Bindary, Adel Z. El-Sonbati, Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal complexes, Journal of Molecular Structure 1086 (2015) 266–275.
  • [18] A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, M.M. Ghoneim, M.T. Mohesien, M.K. Abd El-Kader, Polymeric complexes — LXI. Supramolecular structure, thermal properties, SS-DNA binding activity and antimicrobial activities of polymeric complexes of rhodanine hydrazone compounds, Journal of Molecular Liquids 215 (2016) 711–739.
  • [19] A.Z. El-Sonbati, M. A. Diab, A. A. El-Bindary, M. A. El-Mogazy, Polymer complexes. LXVI, thermal, spectroscopic studies and supramolecular structure of N-[β-(ethylamino)] acrylamide polymer complexes, Journal of Molecular Liquids, 219 (2016) 1044-1057.
  • [20] A. A. El-Bindary, M. M. Ghoneim, M. A. Diab, A. Z. El-Sonbati, L. S. Serag, Thermodynamic studies of N-allylrhodanine derivatives and their metal complexes, Journal of Molecular Liquids 223 (2016) 448-461.
  • [21] M. A. Diab, A. Z. El-Sonbati, A. A. El-Bindary, S. M. Morgan, M. A. El-Kader, Geometrical structures, molecular docking, spectroscopic characterization of mixed ligand and Schiff base metal complexes, Journal of Molecular Liquids, 218 (2016) 571-585.
  • [22] R. D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford CT, 2009.
  • [23] Gaussian 09, Revision D.01 Linux (Gaussian Inc., Wallingford, CT, USA) 2009.
  • [24] Gaussian 09, Revision A.02 Windows (Gaussian Inc., Wallingford, CT, USA) 2009.
  • [25] Ralph G Pearson, Absolute electronegativity and Hardness: Applicaiton to Inorganic Chemistry, Inorganic Chemistry 27 (1988) 734-740.
Year 2018, Volume: 2 Issue: 2, 7 - 15, 15.12.2018
https://doi.org/10.33435/tcandtc.379540

Abstract

References

  • [1] P. Jankowski, W. Wieczorek, P. Johansson, SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches, J Mol Model 23:6 (2017) 3-9.
  • [2] Juan Frau, Noemi Hernández-Haro, Daniel Glossman-Mitnik, Computational prediction of the pKas of small peptides through Conceptual DFT descriptors, Chemical Physics Letters 671 (2017) 138–141.
  • [3] Meryem Evecen, Hasan Tanak, DFT quantum chemical studies of (E)-4-Bromo-N-(2- chlorobenzylidene)-aniline, Appl. Phys. A, 123: 91 (2017) 1-6.
  • [4] Samaneh Bagheri Novir, Seyed Majid Hashemianzadeh, Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells, Computational and Theoretical Chemistry 1102 (2017) 87–97.
  • [5] Sadegh Kaviani, Mohammad Izadyar, Mohammad Reza Housaindokht Kaviani, A DFT study on the complex formation between desferrithiocin and metal ions (Mg2+, Al3+, Ca2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+), Computational Biology and Chemistry 67 (2017) 114–121.
  • [6] Mehmet Ferdi Fellah, A DFT study of hydrogen adsorption on Be, Mg and Ca frameworks in erionite zeolite, Applied Surface Science 394 (2017) 9–15.
  • [7] H. Moustafa, Mohamed E. Elshakre, Salwa Elramly, Electronic structure and nonlinear optical properties (NLO) of 2,4-di-aryl-1,5-benzothiazepine derivatives using DFT approach, Journal of Molecular Structure 1136 (2017) 25-36.
  • [8] Subhajit Mukherjee, Venkata P. Reddy B., Ishani Mitra, Sankar Ch. Moi, In vitro kinetic based adduct formation mechanism of a cytotoxic Pt(II) complex with sulfur containing bio-relevant molecules and a theoretical approach, Polyhedron 124 (2017) 251–261.
  • [9] Jonas Šarlauskas, Jelena Tamulienė, Narimantas Čėnas, Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 178 (2017) 136–141.
  • [10] R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc. 85 (1963) 3533.
  • [11] John J Gilman, Chemica and physical “hardness”, Mat. Res. Innovat. 1 (1997) 71.
  • [12] Robert G Parr, Ralph G Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105 (1983) 7512.
  • [13] Mihai V. Putz, Nino Russo, Emilia Sicilia, On the Applicability of the HSAB Principle through the Use of Improved Computational Schemes for Chemical Hardness Evaluation, Journal of Computational Chemistry 25 (2004) 994-1003.
  • [14] K. Sayin, S. E. Kariper, T. A. Sayin, D. Karakaş, Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [15] W. Loued, J. Wéry, A. Dorlando, K. Alimi, A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment, Journal of Molecular Structure 1081 (2015) 486–493
  • [16] Huicen Zhu, Weimin Guo, Zhemin Shen, Qingli Tang, Wenchao Ji, Lijuan Jia, QSAR models for degradation of organic pollutants in ozonation process under acidic condition, Chemosphere 119 (2015) 65–71.
  • [17] Walaa H. Mahmoud, Nessma F. Mahmoud, Gehad G. Mohamed, Ashraf A. El-Bindary, Adel Z. El-Sonbati, Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal complexes, Journal of Molecular Structure 1086 (2015) 266–275.
  • [18] A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, M.M. Ghoneim, M.T. Mohesien, M.K. Abd El-Kader, Polymeric complexes — LXI. Supramolecular structure, thermal properties, SS-DNA binding activity and antimicrobial activities of polymeric complexes of rhodanine hydrazone compounds, Journal of Molecular Liquids 215 (2016) 711–739.
  • [19] A.Z. El-Sonbati, M. A. Diab, A. A. El-Bindary, M. A. El-Mogazy, Polymer complexes. LXVI, thermal, spectroscopic studies and supramolecular structure of N-[β-(ethylamino)] acrylamide polymer complexes, Journal of Molecular Liquids, 219 (2016) 1044-1057.
  • [20] A. A. El-Bindary, M. M. Ghoneim, M. A. Diab, A. Z. El-Sonbati, L. S. Serag, Thermodynamic studies of N-allylrhodanine derivatives and their metal complexes, Journal of Molecular Liquids 223 (2016) 448-461.
  • [21] M. A. Diab, A. Z. El-Sonbati, A. A. El-Bindary, S. M. Morgan, M. A. El-Kader, Geometrical structures, molecular docking, spectroscopic characterization of mixed ligand and Schiff base metal complexes, Journal of Molecular Liquids, 218 (2016) 571-585.
  • [22] R. D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford CT, 2009.
  • [23] Gaussian 09, Revision D.01 Linux (Gaussian Inc., Wallingford, CT, USA) 2009.
  • [24] Gaussian 09, Revision A.02 Windows (Gaussian Inc., Wallingford, CT, USA) 2009.
  • [25] Ralph G Pearson, Absolute electronegativity and Hardness: Applicaiton to Inorganic Chemistry, Inorganic Chemistry 27 (1988) 734-740.
There are 25 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Article
Authors

Zinet Zaim This is me

Tuba Alagöz Sayın

Koray Sayın

Duran Karakaş

Publication Date December 15, 2018
Submission Date January 16, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Zaim, Z., Alagöz Sayın, T., Sayın, K., Karakaş, D. (2018). Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness. Turkish Computational and Theoretical Chemistry, 2(2), 7-15. https://doi.org/10.33435/tcandtc.379540
AMA Zaim Z, Alagöz Sayın T, Sayın K, Karakaş D. Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness. Turkish Comp Theo Chem (TC&TC). December 2018;2(2):7-15. doi:10.33435/tcandtc.379540
Chicago Zaim, Zinet, Tuba Alagöz Sayın, Koray Sayın, and Duran Karakaş. “Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness”. Turkish Computational and Theoretical Chemistry 2, no. 2 (December 2018): 7-15. https://doi.org/10.33435/tcandtc.379540.
EndNote Zaim Z, Alagöz Sayın T, Sayın K, Karakaş D (December 1, 2018) Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness. Turkish Computational and Theoretical Chemistry 2 2 7–15.
IEEE Z. Zaim, T. Alagöz Sayın, K. Sayın, and D. Karakaş, “Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness”, Turkish Comp Theo Chem (TC&TC), vol. 2, no. 2, pp. 7–15, 2018, doi: 10.33435/tcandtc.379540.
ISNAD Zaim, Zinet et al. “Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness”. Turkish Computational and Theoretical Chemistry 2/2 (December 2018), 7-15. https://doi.org/10.33435/tcandtc.379540.
JAMA Zaim Z, Alagöz Sayın T, Sayın K, Karakaş D. Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness. Turkish Comp Theo Chem (TC&TC). 2018;2:7–15.
MLA Zaim, Zinet et al. “Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness”. Turkish Computational and Theoretical Chemistry, vol. 2, no. 2, 2018, pp. 7-15, doi:10.33435/tcandtc.379540.
Vancouver Zaim Z, Alagöz Sayın T, Sayın K, Karakaş D. Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical Hardness. Turkish Comp Theo Chem (TC&TC). 2018;2(2):7-15.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)